1
|
Jiang L, Wen J, Tan D, Xie J, Li J, Li C. Growth stage-related capsular polysaccharide translocon Wza in Vibrio splendidus modifies phage vB_VspM_VS2 susceptibility. Commun Biol 2024; 7:1338. [PMID: 39414953 PMCID: PMC11484964 DOI: 10.1038/s42003-024-07038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Bacteria at different growth stages usually coordinate capsular polysaccharide (CPS) formation and may affect their susceptibility to phage. In this study, we evaluated the infection efficacy of phage vB_VspM_VS2 in V. splendidus AJ01 at different growth stages and explored the role of growth stage-related CPS translocon Wza in the susceptibility of V. splendidus to phage vB_VspM_VS2. The results showed that V. splendidus locked in the stationary growth stage (SGS) or early exponential stage (EES) infected with phage (EES-P) has a low susceptibility to phage vB_VspM_VS and exhibit a pronounced reduction in phage adsorption rate as compared to the EES bacteria. The expression of wza of CPS transport gene was significantly increased in EES bacteria compared to that bacteria locked in the SGS or EES-P. Bacteria with deleted wza (Δwza mutant) escaped phage adsorption due to absence of Wza mediated down-regulation of CPS expression, otherwise. Our results reveal that the Wza of V. splendidus can promotes phage to infect these bacteria via increasing the phage absorption, which provides important implications for using phages therapeutically target pathogenic bacteria in dynamics communities.
Collapse
Affiliation(s)
- Liming Jiang
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiasong Xie
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Geng Y, Nguyen TVP, Homaee E, Golding I. Using bacterial population dynamics to count phages and their lysogens. Nat Commun 2024; 15:7814. [PMID: 39242585 PMCID: PMC11379933 DOI: 10.1038/s41467-024-51913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when E. coli growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.
Collapse
Affiliation(s)
- Yuncong Geng
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. Coinfecting phages impede each other's entry into the cell. Curr Biol 2024; 34:2841-2853.e18. [PMID: 38878771 PMCID: PMC11233250 DOI: 10.1016/j.cub.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The developmental choice made by temperate phages, between cell death (lysis) and viral dormancy (lysogeny), is influenced by the relative abundance of viruses and hosts in the environment. The paradigm for this abundance-driven decision is phage lambda of E. coli, whose propensity to lysogenize increases with the number of viruses coinfecting the same bacterium. It is believed that lambda uses this number to infer whether phages or bacteria outnumber each other. However, this interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). Here, we show this premise to be faulty. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, performed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of phage entry decrease with the number of adsorbed phages. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage attachment, as evidenced by compromised membrane integrity and loss of membrane potential. The dependence of entry dynamics on the surrounding medium results in a strong impact on the infection outcome, while the protracted entry of coinfecting phages increases the heterogeneity in infection outcome at a given MOI. Our findings in lambda, and similar results we obtained for phages T5 and P1, demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R Chemla
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Duan X, Jiang L, Guo M, Li C. Isolation, characterization and application of a lytic phage vB_VspM_VS1 against Vibrio splendidus biofilm. PLoS One 2023; 18:e0289895. [PMID: 37656737 PMCID: PMC10473537 DOI: 10.1371/journal.pone.0289895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/03/2023] Open
Abstract
Vibrio splendidus is a common pathogen in the ocean that infects Apostichopus japonicus, Atlantic salmon and Crassostrea gigas, leading to a variety of diseases. In this study, a virulent phage vB_VspM_VS1, which infects V. splendidus, was isolated from aquaculture ponds in Dalian, China, and it belongs to the family Straboviridae in the order Caudoviricetes. vB_VspM_VS1 had an adsorption rate of 96% in 15 min, a latent period of 65 min, and a burst size of 140 ± 6 PFU/cell. The complete genome of phage vB_VspM_VS1 consists of a linear double-stranded DNA that is 248,270 bp in length with an average G + C content of 42.5% and 389 putative protein-coding genes; 116 genes have known functions. There are 4 tail fiber genes in the positive and negative strands of the phage vB_VspM_VS1 genome. The protein domain of the phage vB_VspM_VS1 tail fibers was obtained from the Protein Data Bank and the SMART (http://smart.embl.de) database. Bacterial challenge tests revealed that the growth of V. splendidus HS0 was apparently inhibited (OD600 < 0.01) in 12 h at an MOI of 10. In against biofilms, we also showed that the OD570 value of the vB_VspM_VS1-treated group (MOI = 1) decreased significantly to 0.04 ± 0.01 compared with that of the control group (0.48 ± 0.08) at 24 h. This study characterizes the genome of the phage vB_VspM_VS1 that infects the pathogenic bacterium V. splendidus of A. japonicus.
Collapse
Affiliation(s)
- Xuemei Duan
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Liming Jiang
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Figueroa-Bossi N, Balbontín R, Bossi L. Working with Bacteria, Phage, and Plasmids. Cold Spring Harb Protoc 2022; 2022:Pdb.top107848. [PMID: 35960618 DOI: 10.1101/pdb.top107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methods for the in vivo manipulation of bacterial genomes have improved greatly in recent years because of the discovery of new mechanisms and the gigantic leap forward in DNA-sequencing technology. Many cutting-edge approaches still rely on a variety of technical routines, the correct implementation of which is critical for the success of an experiment. Here, we introduce some of these procedures as used for Escherichia coli and Salmonella enterica We begin by reviewing the aspects of the biology of these two species that are most relevant for their manipulation in the laboratory.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Roberto Balbontín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Sevilla, Spain
| | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Gonzales MF, Piya DK, Koehler B, Zhang K, Yu Z, Zeng L, Gill JJ. New Insights into the Structure and Assembly of Bacteriophage P1. Viruses 2022; 14:v14040678. [PMID: 35458408 PMCID: PMC9024508 DOI: 10.3390/v14040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Bacteriophage P1 is the premier transducing phage of E. coli. Despite its prominence in advancing E. coli genetics, modern molecular techniques have not been applied to thoroughly understand P1 structure. Here, we report the proteome of the P1 virion as determined by liquid chromatography tandem mass-spectrometry. Additionally, a library of single-gene knockouts identified the following five previously unknown essential genes: pmgA, pmgB, pmgC, pmgG, and pmgR. In addition, proteolytic processing of the major capsid protein is a known feature of P1 morphogenesis, and we identified the processing site by N-terminal sequencing to be between E120 and S121, producing a 448-residue, 49.3 kDa mature peptide. Furthermore, the P1 defense against restriction (Dar) system consists of six known proteins that are incorporated into the virion during morphogenesis. The largest of these, DarB, is a 250 kDa protein that is believed to translocate into the cell during infection. DarB deletions indicated the presence of an N-terminal packaging signal, and the N-terminal 30 residues of DarB are shown to be sufficient for directing a heterologous reporter protein to the capsid. Taken together, the data expand on essential structural P1 proteins as well as introduces P1 as a nanomachine for cellular delivery.
Collapse
Affiliation(s)
- Miguel F. Gonzales
- Center for Phage Technology, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA; (M.F.G.); (D.K.P.); (K.Z.); (Z.Y.); (L.Z.)
- Interdisciplinary Program in Genetics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | - Denish K. Piya
- Center for Phage Technology, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA; (M.F.G.); (D.K.P.); (K.Z.); (Z.Y.); (L.Z.)
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA;
| | - Brian Koehler
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA;
| | - Kailun Zhang
- Center for Phage Technology, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA; (M.F.G.); (D.K.P.); (K.Z.); (Z.Y.); (L.Z.)
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA;
| | - Zihao Yu
- Center for Phage Technology, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA; (M.F.G.); (D.K.P.); (K.Z.); (Z.Y.); (L.Z.)
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA;
| | - Lanying Zeng
- Center for Phage Technology, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA; (M.F.G.); (D.K.P.); (K.Z.); (Z.Y.); (L.Z.)
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA;
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA; (M.F.G.); (D.K.P.); (K.Z.); (Z.Y.); (L.Z.)
- Interdisciplinary Program in Genetics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-979-458-6368
| |
Collapse
|
8
|
Interactions between Viral Regulatory Proteins Ensure an MOI-Independent Probability of Lysogeny during Infection by Bacteriophage P1. mBio 2021; 12:e0101321. [PMID: 34517752 PMCID: PMC8546580 DOI: 10.1128/mbio.01013-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage P1 is a temperate phage which makes the lytic or lysogenic decision upon infecting bacteria. During the lytic cycle, progeny phages are produced and the cell lyses, and in the lysogenic cycle, P1 DNA exists as a low-copy-number plasmid and replicates autonomously. Previous studies at the bulk level showed that P1 lysogenization was independent of multiplicity of infection (MOI; the number of phages infecting a cell), whereas lysogenization probability of the paradigmatic phage λ increases with MOI. However, the mechanism underlying the P1 behavior is unclear. In this work, using a fluorescent reporter system, we demonstrated this P1 MOI-independent lysogenic response at the single-cell level. We further observed that the activity of the major repressor of lytic functions (C1) is a determining factor for the final cell fate. Specifically, the repression activity of P1, which arises from a combination of C1, the anti-repressor Coi, and the corepressor Lxc, remains constant for different MOI, which results in the MOI-independent lysogenic response. Additionally, by increasing the distance between phages that infect a single cell, we were able to engineer a λ-like, MOI-dependent lysogenization upon P1 infection. This suggests that the large separation of coinfecting phages attenuates the effective communication between them, allowing them to make decisions independently of each other. Our work establishes a highly quantitative framework to describe P1 lysogeny establishment. This system plays an important role in disseminating antibiotic resistance by P1-like plasmids and provides an alternative to the lifestyle of phage λ.
Collapse
|
9
|
Abstract
Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid-encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.
Collapse
|