1
|
Thetsana C, Moriuchi R, Kodani S. Isolation and structure determination of a new antibacterial lanthipeptide derived from the marine derived bacterium Lysinibacillus sp.CTST325. World J Microbiol Biotechnol 2025; 41:54. [PMID: 39878791 DOI: 10.1007/s11274-024-04212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/22/2024] [Indexed: 01/31/2025]
Abstract
Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp. CTST325 (NBRC 116944), produced a new peptidic compound, lysinibacin. Genome sequence analysis of Lysinibacillus sp. CTST325 indicated the presence of several biosynthetic gene clusters for secondary metabolites, including lanthipeptides. The structure determination of lysinibacin was performed using CID-MS and NMR spectral data. As a result, lysinibacin was identified as a new class III lanthipeptide, containing N-dimethylated Tyr at the N-terminus and the unusual amino acid labionin at the C-terminus. The biosynthetic gene cluster of lysinibacin was identified from the genome data of the strain CTST325, based on the structure of lysinibacin. Lysinibacin showed antibacterial activity against Gram-positive bacteria.
Collapse
Affiliation(s)
- Chanaphat Thetsana
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ryota Moriuchi
- Shizuoka Instrumental Analysis Center, Shizuoka University, Shizuoka, Japan
| | - Shinya Kodani
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Wahaab A, Mustafa BE, Hameed M, Batool H, Tran Nguyen Minh H, Tawaab A, Shoaib A, Wei J, Rasgon JL. An Overview of Zika Virus and Zika Virus Induced Neuropathies. Int J Mol Sci 2024; 26:47. [PMID: 39795906 PMCID: PMC11719530 DOI: 10.3390/ijms26010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain-Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Abdul Wahaab
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Bahar E Mustafa
- School of Veterinary Science, Faculty of Science, The University of Melbourne, Melbourne, VIC 3030, Australia;
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hira Batool
- Chughtai Lab, Head Office, 7-Jail Road, Main Gulberg, Lahore 54000, Pakistan;
| | - Hieu Tran Nguyen Minh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdul Tawaab
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Kobayashi R, Saito K, Kodani S. Heterologous Biosynthesis of New Lanthipeptides Nocardiopeptins with an Unprecedented Bridging Pattern of Lanthionine and Labionin. ACS Chem Biol 2024; 19:1896-1903. [PMID: 39248435 DOI: 10.1021/acschembio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The class III lanthipeptide synthetase (LanKC) installs unusual amino acids, such as lanthionine and labionin, in lanthipeptides. Through genome mining, we discovered a new class III lanthipeptide synthetase coding gene (nptKC) and precursor peptide coding genes (nptA1, nptA2, and nptA3) in the genome of the actinobacterium Nocardiopsis alba. Coexpression experiments of the biosynthetic genes in Escherichia coli resulted in the production of new lanthipeptides named nocardiopeptins A1-A3. Analysis of two-dimensional NMR spectra after enzymatic degradation and partial basic hydrolysis of nocardiopeptin A2 revealed that labionin was located in lanthionine with opposite orientations, forming a nesting structure in nocardiopeptin A2. To the best of our knowledge, this bridging pattern in the lanthipeptides was unprecedented, indicating a novel reaction characteristic of the class III lanthipeptide synthetase NptKC.
Collapse
Affiliation(s)
- Ryo Kobayashi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Keita Saito
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Qu J, Song Z, Cheng X, Jiang Z, Zhou J. A new integrated framework for the identification of potential virus-drug associations. Front Microbiol 2023; 14:1179414. [PMID: 37675432 PMCID: PMC10478006 DOI: 10.3389/fmicb.2023.1179414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction With the increasingly serious problem of antiviral drug resistance, drug repurposing offers a time-efficient and cost-effective way to find potential therapeutic agents for disease. Computational models have the ability to quickly predict potential reusable drug candidates to treat diseases. Methods In this study, two matrix decomposition-based methods, i.e., Matrix Decomposition with Heterogeneous Graph Inference (MDHGI) and Bounded Nuclear Norm Regularization (BNNR), were integrated to predict anti-viral drugs. Moreover, global leave-one-out cross-validation (LOOCV), local LOOCV, and 5-fold cross-validation were implemented to evaluate the performance of the proposed model based on datasets of DrugVirus that consist of 933 known associations between 175 drugs and 95 viruses. Results The results showed that the area under the receiver operating characteristics curve (AUC) of global LOOCV and local LOOCV are 0.9035 and 0.8786, respectively. The average AUC and the standard deviation of the 5-fold cross-validation for DrugVirus datasets are 0.8856 ± 0.0032. We further implemented cross-validation based on MDAD and aBiofilm, respectively, to evaluate the performance of the model. In particle, MDAD (aBiofilm) dataset contains 2,470 (2,884) known associations between 1,373 (1,470) drugs and 173 (140) microbes. In addition, two types of case studies were carried out further to verify the effectiveness of the model based on the DrugVirus and MDAD datasets. The results of the case studies supported the effectiveness of MHBVDA in identifying potential virus-drug associations as well as predicting potential drugs for new microbes.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zihao Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaolong Cheng
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zhibin Jiang
- School of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jie Zhou
- School of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
5
|
Ashraf-Uz-Zaman M, Li X, Yao Y, Mishra CB, Moku BK, Song Y. Quinazolinone Compounds Have Potent Antiviral Activity against Zika and Dengue Virus. J Med Chem 2023; 66:10746-10760. [PMID: 37506506 PMCID: PMC10463567 DOI: 10.1021/acs.jmedchem.3c00924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dengue (DENV) and Zika (ZIKV) viruses are important human pathogens, causing ∼100 million symptomatic infections each year. These infections carry a 20-fold increased incidence of serious neurological diseases, such as microcephaly in newborns (for ZIKV) and Guillain-Barré syndrome. Moreover, DENV can develop serious and possibly life-threatening dengue hemorrhagic fever in certain patients. Patients recovered from one of the four serotypes of DENV are still susceptible to other serotypes with a higher likelihood of serious disease because of antibody-dependent enhancement. Except for mosquito control, there have been no antiviral drugs to prevent and treat ZIKV/DENV infections. Phenotypic screening found that 2,3,6-trisubstituted quinazolinone compounds are novel inhibitors of ZIKV replication. Fifty-four analogues were synthesized, and their structure-activity relationships are discussed. Additional testing shows that compounds 22, 27, and 47 exhibited broad and potent activities against ZIKV and DENV with EC50 values as low as 86 nM with no significant cytotoxicity to mammalian cells.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Chandra Bhushan Mishra
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Bala Krishna Moku
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
6
|
Saito K, Mukai K, Kaweewan I, Nakagawa H, Hosaka T, Kodani S. Heterologous Production and Structure Determination of a New Lanthipeptide Sinosporapeptin Using a Cryptic Gene Cluster in an Actinobacterium Sinosporangium siamense. J Microbiol 2023; 61:641-648. [PMID: 37306831 DOI: 10.1007/s12275-023-00059-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Lipolanthine is a subclass of lanthipeptide that has the modification of lipid moiety at the N-terminus. A cryptic biosynthetic gene cluster comprising four genes (sinA, sinKC, sinD, and sinE) involved in the biosynthesis of lipolanthine was identified in the genome of an actinobacterium Sinosporangium siamense. Heterologous coexpression of a precursor peptide coding gene sinA and lanthipeptide synthetase coding gene sinKC in the host Escherichia coli strain BL21(DE3) resulted in the synthesis of a new lanthipeptide, sinosporapeptin. It contained unusual amino acids, including one labionin and two dehydrobutyrine residues, as determined using NMR and MS analyses. Another coexpression experiment with two additional genes of decarboxylase (sinD) and N-acetyl transferase (sinE) resulted in the production of a lipolanthine-like modified sinosporapeptin.
Collapse
Affiliation(s)
- Keita Saito
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Keiichiro Mukai
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Ibaraki, 305-8642, Japan
| | - Takeshi Hosaka
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
7
|
Li Y, Ma Y, Xia Y, Zhang T, Sun S, Gao J, Yao H, Wang H. Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks. Nat Commun 2023; 14:2944. [PMID: 37221219 DOI: 10.1038/s41467-023-38517-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Cyclic peptide natural products represent an important class of bioactive compounds and clinical drugs. Enzymatic side-chain macrocyclization of ribosomal peptides is a major strategy developed by nature to generate these chemotypes, as exemplified by the superfamily of ribosomally synthesized and post-translational modified peptides. Despite the diverse types of side-chain crosslinks in this superfamily, the participation of histidine residues is rare. Herein, we report the discovery and biosynthesis of bacteria-derived tricyclic lanthipeptide noursin, which is constrained by a tri amino acid labionin crosslink and an unprecedented histidine-to-butyrine crosslink, named histidinobutyrine. Noursin displays copper-binding ability that requires the histidinobutyrine crosslink and represents the first copper-binding lanthipeptide. A subgroup of lanthipeptide synthetases, named LanKCHbt, were identified to catalyze the formation of both the labionin and the histidinobutyrine crosslinks in precursor peptides and produce noursin-like compounds. The discovery of the histidinobutyrine-containing lanthipeptides expands the scope of post-translational modifications, structural diversity and bioactivity of ribosomally synthesized and post-translational modified peptides.
Collapse
Affiliation(s)
- Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yeying Ma
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yinzheng Xia
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Tao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shuaishuai Sun
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| | - Hongwei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
8
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
9
|
Villalaín J. LABYRINTHOPEPTIN A2 DISRUPTS RAFT DOMAINS. Chem Phys Lipids 2023; 253:105303. [PMID: 37061155 DOI: 10.1016/j.chemphyslip.2023.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Labyrinthopeptins constitute a class of ribosomal synthesized peptides belonging to the type III family of lantibiotics. They exist in different variants and display broad antiviral activities as well as show antiallodynic activity. Although their mechanism of action is not understood, it has been described that Labyrinthopeptins interact with membrane phospholipids modulating its biophysical properties and point out to membrane destabilization as its main point of action. We have used all-atom molecular dynamics to study the location of labyrinthopeptin A2 in a complex membrane as well as the existence of specific interactions with membrane lipids. Our results indicate that labyrinthopeptin A2, maintaining its globular structure, tends to be placed at the membrane interface, mainly between the phosphate atoms of the phospholipids and the oxygen atom of cholesterol modulating the biophysical properties of the membrane lipids. Outstandingly, we have found that labyrinthopeptin A2 tends to be preferentially surrounded by sphingomyelin while excluding cholesterol. The bioactive properties of labyrinthopeptin A2 could be attributed to the specific disorganization of raft domains in the membrane and the concomitant disruption of the overall membrane organization. These results support the improvement of Labyrinthopeptins as therapeutic molecules, opening up new opportunities for future medical advances.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
10
|
Guarracino DA, Iannaccone J, Cabrera A, Kancharla S. Harnessing the Therapeutic Potential and Biological Activity of Antiviral Peptides. Chembiochem 2022; 23:e202200415. [PMID: 36075015 DOI: 10.1002/cbic.202200415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Peptides are ideal candidates for the development of antiviral therapeutics due to their specificity, chemical diversity and potential for highly potent, safe, molecular interventions. By restricting conformational freedom and flexibility, cyclic peptides frequently increase peptide stability. Viral targets are often very challenging as their evasive strategies for infectivity can preclude standard therapies. In recent years, several peptides from natural sources mitigated an array of viral infections. In parallel, short peptides derived from key viral proteins, modified with chemical groups such as lipids and cell-penetrating sequences, led to highly effective antiviral inhibitor designs. These strategies have been further developed during the recent COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2. Several anti-SARS-CoV-2 peptides are gaining ground in pre-clinical development. Overall, peptides are strong contenders for lead compounds against many life-threatening viruses and may prove to be the key to future efforts revealing viral mechanisms of action and alleviating their effects.
Collapse
Affiliation(s)
| | | | | | - Sneha Kancharla
- The College of New Jersey School of Science, Chemistry, UNITED STATES
| |
Collapse
|
11
|
Oeyen M, Meyen E, Doijen J, Schols D. In-Depth Characterization of Zika Virus Inhibitors Using Cell-Based Electrical Impedance. Microbiol Spectr 2022; 10:e0049122. [PMID: 35862960 PMCID: PMC9431523 DOI: 10.1128/spectrum.00491-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we use electric cell-substrate impedance sensing (ECIS), an established cell-based electrical impedance (CEI) technology, to decipher the kinetic cytopathic effect (CPE) induced by Zika virus (ZIKV) in susceptible human A549 lung epithelial cells and to evaluate several classes of compounds with reported antiviral activity (two entry inhibitors and two replication inhibitors). To validate the assay, we compare the results with those obtained with more traditional in vitro methods based on cell viability and viral yield readouts. We demonstrate that CEI can detect viral infection in a sensitive manner and can be used to determine antiviral potency. Moreover, CEI has multiple benefits compared to conventional assays: the technique is less laborious and better at visualizing the dynamic antiviral activity profile of the compounds, while also it has the ability to determine interesting time points that can be selected as endpoints in assays without continuous readout. We describe several parameters to characterize the compounds' cytotoxicity and their antiviral activity profile. In addition, the CEI patterns provide valuable additional information about the presumed mechanism of action of these compounds. Finally, as a proof of concept, we used CEI to evaluate the antiviral activity of a small series of compounds, for which we demonstrate that the sulfonated polymer PRO2000 inhibits ZIKV with a response profile representative for a viral entry inhibitor. Overall, we demonstrate for the first time that CEI is a powerful technology to evaluate and characterize compounds against ZIKV replication in a real-time, label-free, and noninvasive manner. IMPORTANCE Zika virus can cause serious disease in humans. Unfortunately, no antiviral drugs are available to treat infection. Here, we use an impedance-based method to continuously monitor virus infection in-and damage to-human cells. We can determine the Zika viral dose with this technique and also evaluate whether antiviral compounds protect the cells from damage caused by virus replication. We also show that this technique can be used to further unravel the characteristics of these compounds, such as their toxicity to the cells, and that it might even give further insight in their mechanism of antiviral action. Finally, we also find a novel Zika virus inhibitor, PRO2000. Overall, in this study, we use the impedance technology to-for the first time-evaluate compounds with anti-Zika virus properties, and therefore it can add valuable information in the further search for antiviral drugs.
Collapse
Affiliation(s)
- Merel Oeyen
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Eef Meyen
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jordi Doijen
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dominique Schols
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
12
|
Zhang Y, Hong Z, Zhou L, Zhang Z, Tang T, Guo E, Zheng J, Wang C, Dai L, Si T, Wang H. Biosynthesis of Gut‐Microbiota‐Derived Lantibiotics Reveals a Subgroup of S8 Family Proteases for Class III Leader Removal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Liang Zhou
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Ting Tang
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Ciji Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
13
|
Zhang Y, Hong Z, Zhou L, Zhang Z, Tang T, Guo E, Zheng J, Wang C, Dai L, Si T, Wang H. Biosynthesis of Gut-Microbiota-Derived Lantibiotics Reveals a Subgroup of S8 Family Proteases for Class III Leader Removal. Angew Chem Int Ed Engl 2021; 61:e202114414. [PMID: 34889011 DOI: 10.1002/anie.202114414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
Lanthipeptides are a group of ribosomally synthesized and post-translationally modified peptides with diverse structural features and bioactivities. Gut-microbiota-derived lanthipeptides play important roles in gut homeostasis of the host. Herein, we report the discovery and biosynthesis of class III lantibiotics named amylopeptins, which are derived from the gut microbiota of Sprague-Dawley rats and display a narrow antimicrobial spectrum. In contrast to known class III lanthipeptides, the biosynthesis of amylopeptins employs AmyP, which belongs to a subgroup of S8 family serine proteases, to remove the leader of corresponding precursor peptides in a site-specific manner during the last step of their maturation. Overall, this study shows for the first time that S8 family proteases participate in the biosynthesis of class III lanthipeptides.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liang Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ting Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| | - Ciji Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| |
Collapse
|
14
|
Ratanakomol T, Roytrakul S, Wikan N, Smith DR. Berberine Inhibits Dengue Virus through Dual Mechanisms. Molecules 2021; 26:5501. [PMID: 34576974 PMCID: PMC8470584 DOI: 10.3390/molecules26185501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Mosquito transmitted viruses, particularly those of the genus Flavivirus, are a significant healthcare burden worldwide, especially in tropical and sub-tropical areas. However, effective medicines for these viral infections remains lacking. Berberine (BBR) is an alkaloid found in some plants used in traditional medicines in Southeast Asia and elsewhere, and BBR has been shown to possess anti-viral activities. During a screen for potential application to mosquito transmitted viruses, BBR was shown to have virucidal activity against dengue virus (DENV; IC50 42.87 µM) as well as against Zika virus (IC50 11.42 µM) and chikungunya virus (IC50 14.21 µM). BBR was shown to have cellular effects that lead to an increase in cellular DENV E protein without a concomitant effect on DENV nonstructural proteins, suggesting an effect on viral particle formation or egress. While BBR was shown to have an effect of ERK1/2 activation this did not result in defects in viral egress mechanisms. The primary effect of BBR on viral production was likely to be through BBR acting through AMPK activation and disruption of lipid metabolism. Combined these results suggest that BBR has a dual effect on DENV infection, and BBR may have the potential for development as an anti-DENV antiviral.
Collapse
Affiliation(s)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Rangsit 12120, Thailand;
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| |
Collapse
|