1
|
Yan J, Wang M, Li X, Fan J, Yu R, Kang M, Zhang Y, Xu J, Zhang X, Zhang S. Construction of an infectious clone for enterovirus A89 and mutagenesis analysis of viral infection and cell binding. Microbiol Spectr 2024; 12:e0333223. [PMID: 38441464 PMCID: PMC10986554 DOI: 10.1128/spectrum.03332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Enterovirus A89 (EV-A89) is an unconventional strain belonging to the Enterovirus A species. Limited research has been conducted on EV-A89, leaving its biological and pathogenic properties unclear. Developing reverse genetic tools for EV-A89 would help to unravel its infection mechanisms and aid in the development of vaccines and anti-viral drugs. In this study, an infectious clone for EV-A89 was successfully constructed and recombinant enterovirus A89 (rEV-A89) was generated. The rEV-A89 exhibited similar characteristics such as growth curve, plaque morphology, and dsRNA expression with parental strain. Four amino acid substitutions were identified in the EV-A89 capsid, which were found to enhance viral infection. Mechanistic studies revealed that these substitutions increased the virus's cell-binding ability. Establishing reverse genetic tools for EV-A89 will significantly contribute to understanding viral infection and developing anti-viral strategies.IMPORTANCEEnterovirus A species contain many human pathogens and have been classified into conventional cluster and unconventional cluster. Most of the research focuses on various conventional members, while understanding of the life cycle and infection characteristics of unconventional viruses is still very limited. In our study, we constructed the infectious cDNA clone and single-round infectious particles for the unconventional EV-A89, allowing us to investigate the biological properties of recombinant viruses. Moreover, we identified key amino acids residues that facilitate EV-A89 infection and elucidate their roles in enhancing viral binding to host cells. The establishment of the reverse genetics system will greatly facilitate future study on the life cycle of EV-A89 and contribute to the development of prophylactic vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Jingjing Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rui Yu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Miaomiao Kang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Yang H, Zhu R, Zhou Z, Chen H, Wu Y, Zhang D, Liu C, Xia N, Xu L, Cheng T. Construction and characterization of an infectious cDNA clone of human rhinovirus A89. Heliyon 2024; 10:e27214. [PMID: 38463855 PMCID: PMC10920733 DOI: 10.1016/j.heliyon.2024.e27214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Rhinoviruses (RVs) are major causes of the common cold and are related to severe respiratory tract diseases, leading to a considerable economic burden and impacts on public health. Available and stable viral resources of rhinoviruses for laboratory use are important for promoting studies on rhinoviruses and further vaccine or therapeutic drug development. Reverse genetic technology can be useful to produce rhinoviruses and will help to promote studies on their pathogenesis and virulence. In this study, rhinovirus A89, an RV-A species that has been found to be highly involved in hospitalization triggered by RV infections, was selected to construct an infectious clone based on its sequence as a representative. The viral mRNA produced by a T7 RNA transcript system was transfected into H1-HeLa cells, and the rescued RV-A89 viruses were harvested and confirmed by sequencing. The rescued RV-A89 induced a similar cytopathic effect (CPE) and shared almost identical growth kinetics curves with parental RV-A89. Moreover, 9A7, a prescreened monoclonal antibody against the parental RV-A89, had a good and specific reaction with the rescued RV-A89, and further characterization showed almost the same morphology and protein composition of both viruses; thus, recombinant RV-A89 with similar biological characterization and virulence to the parental virus was obtained. In summary, the infectious clone of RV-A89 was successfully established, and the development of reverse genetic technology for rhinovirus will provide a framework for further studies on rhinoviruses.
Collapse
Affiliation(s)
| | | | - Zhenhong Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Hao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yuanyuan Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Dongqing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Che Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
3
|
Guo S, Xun M, Fan T, Li X, Yao H, Li X, Wu B, Yang H, Ma C, Wang H. Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo. Virol Sin 2023; 38:549-558. [PMID: 37244518 PMCID: PMC10436053 DOI: 10.1016/j.virs.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
Coxsackievirus belongs to the Picornaviridae family and is one of the major pathogens that cause hand, foot and mouth disease (HFMD) in infants and children with potential serious complications and even deaths. The pathogenesis of this virus is not fully elucidated and no vaccine or antiviral drug has been approved. In this study, a full-length infectious cDNA clone of coxsackievirus B5 virus was assembled and the recombinant virus displayed similar growth kinetics and ability to cause cytopathic effects as the parental virus. Luciferase reporter was then incorporated to generate both full-length and subgenomic replicon (SGR) reporter viruses. The full-length reporter virus is suitable for high-throughput antiviral screening, while the SGR is a useful tool to study viral-host interactions. More importantly, the full-length reporter virus has also been shown to infect the suckling mouse model and the reporter gene could be detected using an in vivo imaging system, thus providing a powerful tool to track viruses in vivo. In summary, we have generated coxsackievirus B5 reporter viruses and provided unique tools for studying virus-host interactions in vitro and in vivo as well as for high-throughput screenings (HTS) to identify novel antivirals.
Collapse
Affiliation(s)
- Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Meng Xun
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Haoyan Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaozhen Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Chaofeng Ma
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710061, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|