1
|
Sun Y, Nie W, Tian D, Ye Q. Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. J Clin Virol 2024; 171:105662. [PMID: 38432097 DOI: 10.1016/j.jcv.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Monkeypox virus (MPXV) is responsible for causing a zoonotic disease called monkeypox (mpox), which sporadically infects humans in West and Central Africa. It first infected humans in 1970 and, along with the variola virus, belongs to the genus Orthopoxvirus in the poxvirus family. Since the World Health Organization declared the MPXV outbreak a "Public Health Emergency of International Concern" on July 23, 2022, the number of infected patients has increased dramatically. To control this epidemic and address this previously neglected disease, MPXV needs to be better understood and reevaluated. In this review, we cover recent research on MPXV, including its genomic and pathogenic characteristics, transmission, mutations and mechanisms, clinical characteristics, epidemiology, laboratory diagnosis, and treatment measures, as well as prevention of MPXV infection in light of the 2022 and 2023 global outbreaks. The 2022 MPXV outbreak has been primarily associated with close intimate contact, including sexual activity, with most cases diagnosed among men who have sex with men. The incubation period of MPXV infection usually lasts from 6 to 13 days, and symptoms include fever, muscle pains, headache, swollen lymph nodes, and a characteristic painful rash, including several stages, such as macules, papules, blisters, pustules, scabs, and scab shedding involving the genitals and anus. Polymerase chain reaction (PCR) is usually used to detect MPXV in skin lesion material. Treatment includes supportive care, antivirals, and intravenous vaccinia immune globulin. Smallpox vaccines have been designed with four givens emergency approval for use against MPXV infection.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wenjian Nie
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
2
|
Kabir F, Plaisance E, Portman A, Marfo A, Cirrincione K, Silva D, Amadi V, Stringer J, Short L. Mpox Viral Lineage Analysis and Technique Development Using Next-generation Sequencing Approach. J Infect Dis 2024; 229:S163-S171. [PMID: 37968965 DOI: 10.1093/infdis/jiad504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In response to Mpox endemic and public health emergency, DCHHS aimed to develop NGS based techniques to streamline Mpox viral clade and lineage analysis. METHODS The Mpox sequencing workflow started with DNA extraction and adapted Illumina's COVIDSeq assay using hMpox primer pools from Yale School of Public Health. Sequencing steps included cDNA amplification, tagmentation, PCR indexing, pooling libraries, sequencing on MiSeq, data analysis, and report generation. The bioinformatic analysis comprised read assembly and consensus sequence mapping to reference genomes and variant identification, and utilized pipelines including Illumina BaseSpace, NextClade, CLC Workbench, Terra.bio for data quality control (QC) and validation. RESULTS In total, 171 mpox samples were sequenced using modified COVIDSeq workflow and QC metrics were assessed for read quality, depth, and coverage. Multiple analysis pipelines identified the West African clade IIb as the only clade during peak Mpox infection from July through October 2022. Analyses also indicated lineage B.1.2 as the dominant variant comprising the majority of Mpox viral genomes (77.7%), implying its geographical distribution in the United States. Viral sequences were uploaded to GISAID EpiPox. CONCLUSIONS We developed NGS workflows to precisely detect and analyze mpox viral clade and lineages aiding in public health genomic surveillance.
Collapse
Affiliation(s)
- Farruk Kabir
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Erin Plaisance
- Dallas County Health and Human Services, Dallas, Texas, USA
| | | | - Agnes Marfo
- Dallas County Health and Human Services, Dallas, Texas, USA
| | | | - David Silva
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Victor Amadi
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Joey Stringer
- Dallas County Health and Human Services, Dallas, Texas, USA
| | - Luke Short
- Dallas County Health and Human Services, Dallas, Texas, USA
| |
Collapse
|
3
|
Kumar A, Singh N, Anvikar AR, Misra G. Monkeypox virus: insights into pathogenesis and laboratory testing methods. 3 Biotech 2024; 14:67. [PMID: 38357674 PMCID: PMC10861412 DOI: 10.1007/s13205-024-03920-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
The monkeypox virus (MPXV) is a zoonotic pathogen that transmits between monkeys and humans, exhibiting clinical similarities with the smallpox virus. Studies on the immunopathogenesis of MPXV revealed that an initial strong innate immune response is elicited on viral infection that subsequently helps in circumventing the host defense. Once the World Health Organization (WHO) declared it a global public health emergency in July 2022, it became essential to clearly demarcate the MPXV-induced symptoms from other viral infections. We have exhaustively searched the various databases involving Google Scholar, PubMed, and Medline to extract the information comprehensively compiled in this review. The primary focus of this review is to describe the diagnostic methods for MPXV such as polymerase chain reaction (PCR), and serological assays, along with developments in viral isolation, imaging techniques, and next-generation sequencing. These innovative technologies have the potential to greatly enhance the accuracy of diagnostic procedures. Significant discoveries involving MPXV immunopathogenesis have also been highlighted. Overall, this will be a knowledge repertoire that will be crucial for the development of efficient monitoring and control strategies in response to the MPXV infection helping clinicians and researchers in formulating healthcare strategies.
Collapse
Affiliation(s)
- Anoop Kumar
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
| | - Neeraj Singh
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
| | - Anupkumar R. Anvikar
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
| | - Gauri Misra
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
- Head Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), Noida, U.P. 201309 India
| |
Collapse
|
4
|
Wu C, A R, Ye S, Ye F, Huo W, Lu R, Tang Y, Yang J, Meng X, Tang Y, Chen S, Zhao L, Huang B, Zhang Z, Chen Y, Li D, Wang W, Shan KJ, Lu J, Tan W. Rapid identification of full-length genome and tracing variations of monkeypox virus in clinical specimens based on mNGS and amplicon sequencing. Virol Sin 2024; 39:134-143. [PMID: 38070873 PMCID: PMC10877412 DOI: 10.1016/j.virs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The monkeypox virus (MPXV) has triggered a current outbreak globally. Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control. It is a significant challenge but necessary to optimize the strategy and application of rapid full-length genome identification and to track variations of MPXV in clinical specimens with low viral loads, as it is one of the DNA viruses with the largest genome and the most AT-biased, and has a significant number of tandem repeats. Here we evaluated the performance of metagenomic and amplicon sequencing techniques, and three sequencing platforms in MPXV genome sequencing based on multiple clinical specimens of five mpox cases in Chinese mainland. We rapidly identified the full-length genome of MPXV with the assembly of accurate tandem repeats in multiple clinical specimens. Amplicon sequencing enables cost-effective and rapid sequencing of clinical specimens to obtain high-quality MPXV genomes. Third-generation sequencing facilitates the assembly of the terminal tandem repeat regions in the monkeypox virus genome and corrects a common misassembly in published sequences. Besides, several intra-host single nucleotide variations were identified in the first imported mpox case. This study offers an evaluation of various strategies aimed at identifying the complete genome of MPXV in clinical specimens. The findings of this study will significantly enhance the surveillance of MPXV.
Collapse
Affiliation(s)
- Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Ruhan A
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Sheng Ye
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Fei Ye
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Weibang Huo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Roujian Lu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Yue Tang
- MGI, BGI-Shenzhen, Shenzhen, 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xuehong Meng
- Thermo Fisher Scientific, Beijing, 100013, China
| | - Yun Tang
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Shuang Chen
- Chongqing Municipal Key Laboratory for High Pathogenic Microbes, Chongqing Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Li Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Zhongxian Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; School of Public Health, Baotou Medical College, Baotou, 014030, China
| | - Yuda Chen
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; School of Public Health, Baotou Medical College, Baotou, 014030, China
| | - Dongfang Li
- BGI PathoGenesis Pharmaceutical Technology, Shenzhen, 518000, China
| | - Wenling Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Ke-Jia Shan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China; School of Public Health, Baotou Medical College, Baotou, 014030, China.
| |
Collapse
|