1
|
Rojas A, Moreira Soares A, Mendoza LP, Acosta ME, Aria L, Páez M, Herebia L, Vallejos MA, de Guillén Y, Aquino VH. Revisiting the dengue epidemic of 2011 in Paraguay: molecular epidemiology of dengue virus in the Asuncion metropolitan area. BMC Infect Dis 2021; 21:769. [PMID: 34364380 PMCID: PMC8349040 DOI: 10.1186/s12879-021-06487-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Dengue is one of the most important re-emerging viral diseases and the most common human arthropod-borne viral infection worldwide. Any of the four Dengue virus serotypes (DENV-1 to 4) can cause asymptomatic infections or clinical manifestations that range in severity from a mild, self-limited illness, to a severe disease characterized by a shock syndrome that can lead to death. Paraguay suffers periodic epidemic outbreaks of dengue since 1988 when the DENV-1 was introduced in the country. Epidemics caused by all four serotypes have been reported and the country. Although dengue is endemic in Paraguay, few studies have described the molecular epidemiology of DENV in the country, which is important to understand the local and global spread, as well as the evolution of this pathogen. Methods This was a cross-sectional study of a convenience sample. Suspected dengue patients of any age were recruited from the Emergency Laboratory of the Central Hospital of the Institute of Social Welfare, Asuncion, Paraguay, from February to June of 2011. A DENV antigen test was used to confirm the infection. The protein E gene sequences of isolated viruses were sequenced for phylogenetic analysis. Results Dengue was confirmed in 55.1% of the participants (n = 98/178). The most frequent clinical findings were fever, headache, and myalgia. Identity analyses of the protein E gene sequence of 56 viruses isolated showed the circulation of DENV-1 (n = 45) and DENV-2 (n = 11) in the Asuncion metropolitan area in 2011. Molecular epidemiology analyses suggest that DENV-1 was introduced into Paraguay from Argentina, while the DENV-2 from Brazil, replacing previous virus lineages. Conclusions We have analyzed the molecular epidemiology of DENV-1 and DENV-2 isolated in Paraguay in 2011. We found strong evidence that DENV-1 was introduced into Paraguay from Argentina, while the DENV-2 from Brazil, replacing previous virus lineages. Molecular epidemiology studies are of great interest to analyze the dynamic of DENV spread, which are useful for early implementation of containment measures to reduce the risk of explosive epidemics caused by this virus. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06487-9.
Collapse
Affiliation(s)
- Alejandra Rojas
- Department of Production, Health Sciences Research Institute, National University of Asuncion, San Lorenzo, Paraguay
| | - Adriana Moreira Soares
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Laura Patricia Mendoza
- Department of Public Health, Health Sciences Research Institute, National University of Asuncion, San Lorenzo, Paraguay
| | - María Eugenia Acosta
- Department of Production, Health Sciences Research Institute, National University of Asuncion, San Lorenzo, Paraguay
| | - Laura Aria
- Department of Production, Health Sciences Research Institute, National University of Asuncion, San Lorenzo, Paraguay
| | - Malvina Páez
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Lilian Herebia
- Emergency Department, Central Hospital of the Institute of Social Welfare, Asunción, Paraguay
| | - María Asunción Vallejos
- Emergency Department, Central Hospital of the Institute of Social Welfare, Asunción, Paraguay
| | - Yvalena de Guillén
- Department of Production, Health Sciences Research Institute, National University of Asuncion, San Lorenzo, Paraguay
| | - Victor Hugo Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Quantitative and Selective Surface Plasmon Resonance Response Based on a Reduced Graphene Oxide-Polyamidoamine Nanocomposite for Detection of Dengue Virus E-Proteins. NANOMATERIALS 2020; 10:nano10030569. [PMID: 32245185 PMCID: PMC7153703 DOI: 10.3390/nano10030569] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Dengue viral infection is one of the most common deadliest diseases and has become a recurrent issue for public health in tropical countries. Although the spectrum of clinical diagnosis and treatment have recently been established, the efficient and rapid detection of dengue virus (DENV) during viremia and the early febrile phase is still a great challenge. In this study, a dithiobis (succinimidyl undecanoate, DSU)/amine-functionalized reduced graphene oxide--polyamidoamine dendrimer (DSU/amine-functionalized rGO-PAMAM) thin film-based surface plasmon resonance (SPR) sensor was developed for the detection of DENV 2 E-proteins. Different concentrations of DENV 2 E-proteins were successfully tested by the developed SPR sensor-based system. The performance of the developed sensor showed increased shift in the SPR angle, narrow full-width-half-maximum of the SPR curve, high detection accuracy, excellent figure of merit and signal-to-noise ratio, good sensitivity values in the range of 0.08-0.5 pM (S = 0.2576°/pM, R2 = 0.92), and a high equilibrium association constant (KA) of 7.6452 TM-1. The developed sensor also showed a sensitive and selective response towards DENV 2 E-proteins compared to DENV 1 E-proteins and ZIKV (Zika virus) E-proteins. Overall, it was concluded that the Au/DSU/amine-functionalized rGO-PAMAM thin film-based SPR sensor has potential to serve as a rapid clinical diagnostic tool for DENV infection.
Collapse
|
3
|
Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep 2020; 10:2374. [PMID: 32047209 PMCID: PMC7012912 DOI: 10.1038/s41598-020-59388-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023] Open
Abstract
In this work, sensitive detection of dengue virus type 2 E-proteins (DENV-2 E-proteins) was performed in the range of 0.08 pM to 0.5 pM. The successful DENV detection at very low concentration is a matter of concern for targeting the early detection after the onset of dengue symptoms. Here, we developed a SPR sensor based on self-assembled monolayer/reduced graphene oxide-polyamidoamine dendrimer (SAM/NH2rGO/PAMAM) thin film to detect DENV-2 E-proteins. Surface characterizations involving X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirms the incorporation of NH2rGO-PAMAM nanoparticles in the prepared sensor films. The specificity, sensitivity, binding affinity, and selectivity of the SPR sensor were then evaluated. Results indicated that the variation of the sensing layer due to different spin speed, time incubation, and concentration provided a better interaction between the analyte and sensing layer. The linear dependence of the SPR sensor showed good linearity (R2 = 0.92) with the lowest detection of 0.08 pM DENV-2 E-proteins. By using the Langmuir model, the equilibrium association constant was obtained at very high value of 6.6844 TM−1 (R2 = 0.99). High selectivity of the SPR sensor towards DENV-2 E-proteins was achieved in the presence of other competitors.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yasmin Mustapha Kamil
- inLAZER Dynamics Sdn Bhd, InnoHub Unit, Putra Science Park, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Amir Reza Sadrolhosseini
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Adzir Mahdi
- Wireless and Photonics Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
5
|
Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl Trop Dis 2017; 11:e0005224. [PMID: 28068335 PMCID: PMC5221820 DOI: 10.1371/journal.pntd.0005224] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
Dengue, the predominant arthropod-borne viral disease affecting humans, is caused by one of four distinct serotypes (DENV-1, -2, -3 or -4). A literature analysis and review was undertaken to describe the molecular epidemiological trends in dengue disease and the knowledge generated in specific molecular topics in Latin America, including the Caribbean islands, from 2000 to 2013 in the context of regional trends in order to identify gaps in molecular epidemiological knowledge and future research needs. Searches of literature published between 1 January 2000 and 30 November 2013 were conducted using specific search strategies for each electronic database that was reviewed. A total of 396 relevant citations were identified, 57 of which fulfilled the inclusion criteria. All four dengue virus serotypes were present and co-circulated in many countries over the review period (with the predominance of individual serotypes varying by country and year). The number of countries in which more than one serotype circulated steadily increased during the period under review. Molecular epidemiology data were found for Argentina, Bolivia, Brazil, the Caribbean region, Colombia, Ecuador, Mexico and Central America, Paraguay, Peru and Venezuela. Distinct lineages with different dynamics were found in each country, with co-existence, extinction and replacement of lineages occurring over the review period. Despite some gaps in the literature limiting the possibility for comparison, our review has described the molecular epidemiological trends of dengue infection. However, several gaps in molecular epidemiological information across Latin America and the Caribbean were identified that provide avenues for future research; in particular, sequence determination of the dengue virus genome is important for more precise phylogenetic classification and correlation with clinical outcome and disease severity. The wide distribution of the mosquito vector and the co-circulation of multiple dengue virus serotypes has led to increases in the incidence of dengue in the Americas, where it is a major public health concern. Identifying molecular epidemiological trends may help to identify the reasons for the re-emergence of dengue across Latin America and the Caribbean, and, in turn, enable disease control and management. We conducted this review using well defined methods to search for and identify relevant research according to predetermined inclusion criteria. The objective was to obtain a clearer understanding of changes occurring within dengue serotypes that have resulted in substantial genetic diversity and the emergence of endemic and epidemic strains in different parts of the region. There remain fundamental gaps in our understanding of the epidemiological and evolutionary dynamics of dengue and its relation with disease, and it is not possible to correlate accurately spatial or temporal trends in disease epidemiology, disease severity, or the genetic diversity of DENV. It is important to maintain comprehensive epidemiological surveillance throughout the region (including sequencing of viral strains) to detect new DENV lineages and to understand the regional patterns of DENV dissemination.
Collapse
Affiliation(s)
- José Ramos-Castañeda
- Instituto Nacional de Salud Publica, Centro de Investigaciones sobre Enfermedades Infecciosas, Morelos, Mexico
| | - Flavia Barreto dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz/ Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Josélio Maria Galvão de Araujo
- Laboratório de Biologia Molecular de Doenças Infecciosas e do Câncer, Departamento de Microbiologia e Parasitologia; Instituto de Medicina Tropical do Rio Grande do Norte; Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Graham Joint
- Synercom Ltd, Macclesfield, Cheshire, United Kingdom
| | | |
Collapse
|
6
|
Parkash O, Shueb RH. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques. Viruses 2015; 7:5410-27. [PMID: 26492265 PMCID: PMC4632385 DOI: 10.3390/v7102877] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/01/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022] Open
Abstract
Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
Collapse
Affiliation(s)
- Om Parkash
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
7
|
Tittarelli E, Mistchenko AS, Barrero PR. Dengue virus 1 in Buenos Aires from 1999 to 2010: towards local spread. PLoS One 2014; 9:e111017. [PMID: 25343372 PMCID: PMC4208802 DOI: 10.1371/journal.pone.0111017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/19/2014] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) is a public health problem representing the most important arthropod-borne viral disease in humans. In Argentina, Northern provinces have reported autochthonous cases since 1997, though these outbreaks have originated in bordering countries, where co-circulation of more than one serotype has been reported. In the last decade, imported dengue cases have been reported in Buenos Aires, the urban area of Argentina with the highest population density. In 2009, a dengue outbreak affected Buenos Aires and, for the first time, local transmission was detected. All cases of this outbreak were caused by DENV-1. In this report, we present the full-length sequences of 27 DENV-1 isolates, corresponding to imported cases of 1999–2000, as well as local and imported cases of the 2009 and 2010 outbreaks. We analyzed their phylogenetic and phylodynamic relationships and their global and local spread. Additionally, we characterized their genomic and phenotypic features. All cases belonged to DENV-1 genotype V. The most recent ancestor for this genotype was dated ∼1934, whereas that for the 2009 outbreak was dated ∼2007. The mean rates of nucleotide substitution were 4.98E-4 and 8.53E-4 subs./site/yr, respectively. We inferred an introduction from Paraguay in 1999–2000 and mainly from Venezuela during 2009–2010. Overall, the number of synonymous substitutions per synonymous site significantly exceeded the number of non-synonymous substitutions per site and 12 positively selected sites were detected. These analyses could contribute to a better understanding regarding spread and evolution of this pathogen in the Southern Cone of South America.
Collapse
Affiliation(s)
- Estefanía Tittarelli
- Laboratorio de Virología, Hospital de Niños “Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Alicia S. Mistchenko
- Laboratorio de Virología, Hospital de Niños “Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
| | - Paola R. Barrero
- Laboratorio de Virología, Hospital de Niños “Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Villabona-Arenas CJ, Zanotto PMDA. Worldwide spread of Dengue virus type 1. PLoS One 2013; 8:e62649. [PMID: 23675416 PMCID: PMC3652851 DOI: 10.1371/journal.pone.0062649] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/24/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND DENV-1 is one of the four viral serotypes that causes Dengue, the most common mosquito-borne viral disease of humans. The prevalence of these viruses has grown in recent decades and is now present in more than 100 countries. Limited studies document the spread of DENV-1 over the world despite its importance for human health. METHODOLOGY/PRINCIPAL FINDINGS We used representative DENV-1 envelope gene sequences to unravel the dynamics of viral diffusion under a Bayesian phylogeographic approach. Data included strains from 45 distinct geographic locations isolated from 1944 to 2009. The estimated mean rate of nucleotide substitution was 6.56 × 10⁻⁴ substitutions/site/year. The larger genotypes (I, IV and V) had a distinctive phylogenetic structure and since 1990 they experienced effective population size oscillations. Thailand and Indonesia represented the main sources of strains for neighboring countries. Besides, Asia broadcast lineages into the Americas and the Pacific region that diverged in isolation. Also, a transmission network analysis revealed the pivotal role of Indochina in the global diffusion of DENV-1 and of the Caribbean in the diffusion over the Americas. CONCLUSIONS/SIGNIFICANCE The study summarizes the spatiotemporal DENV-1 worldwide spread that may help disease control.
Collapse
Affiliation(s)
- Christian Julián Villabona-Arenas
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Carneiro AR, Cruz ACR, Vallinoto M, Melo DDV, Ramos RTJ, Medeiros DBA, Silva EVPD, Vasconcelos PFDC. Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory. Mem Inst Oswaldo Cruz 2012; 107:805-12. [DOI: 10.1590/s0074-02762012000600016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/10/2012] [Indexed: 11/22/2022] Open
|
10
|
Acosta EG, Castilla V, Damonte EB. Infectious dengue-1 virus entry into mosquito C6/36 cells. Virus Res 2011; 160:173-9. [PMID: 21708195 DOI: 10.1016/j.virusres.2011.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/15/2022]
Abstract
The entry of dengue virus-1 (DENV-1) strain Hawaii into mosquito C6/36 cells was analyzed using a variety of biochemical inhibitors together with electron microscopy. The treatment with ammonium chloride, chlorpromazine, dansylcadaverine and dynasore inhibited virus yields, determined by infectivity titrations, whereas nystatin and methyl-β-cyclodextrin did not have any effect. The effect of the clathrin and dynamin inhibitors on DENV-1 entry was corroborated by detection of internalized virions using immunofluorescence staining. Furthermore, electron micrographs showed the incoming virions attached to electron-dense invaginations of the plasma membrane and within coated vesicles that resembled clathrin-coated pits and vesicles, respectively. The susceptibility to clathrin and dynamin inhibitors of clinical isolates from recent outbreaks was comparable to that shown by the cell culture-adapted reference strain. Similarly, DENV-3 strain H87 and DENV-4 strain 8124 were also inhibited in the presence of ammonium chloride, chlorpromazine and dynasore, allowing conclude that the infectious entry of DENV serotypes to mosquito cells occurs by low pH-dependent clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Eliana G Acosta
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
11
|
Kurosu T, Khamlert C, Phanthanawiboon S, Ikuta K, Anantapreecha S. Highly efficient rescue of dengue virus using a co-culture system with mosquito/mammalian cells. Biochem Biophys Res Commun 2010; 394:398-404. [PMID: 20214880 DOI: 10.1016/j.bbrc.2010.02.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/26/2010] [Indexed: 11/28/2022]
Abstract
The production rate of dengue viruses (DENVs), especially low-passage virus isolates, is low, and, therefore, the isolates are generally used only after several passages. However, in vitro passages could induce mutation(s). In this study, we established a system for the characterization of low-passage viral isolates using an infectious cDNA clone. We used R05-624, a plaque derived from type 2 (DENV-2) Thai strain, for the construction of the cDNA clone, named pmMW/R05-624. We found that transfection of both of mammalian Vero cells and mosquito C6/36 cells with viral RNA derived from the cDNA clone produced a significant amount of progeny virus: 3.2x10(6) focus-forming units (FFU) production per ml of cultured fluid only 3days after transfection with 2 microg RNA. Conversely, no detectable level of viruses was produced by conventional methods using a single cell line, Vero or C6/36. When this system was applied for the characterization of eight low-passage clinical viral isolates by placing their 5'-half or 3'-half in the above cDNA clone, we found that all the isolates, except for L04-225, produced similar levels of progeny virus. Among a total of eight cDNA clones reconstructed with the NS4A-3'NCR region derived from L04-225, one clone carried an insertion and produced a low level of progeny virus. Thus, our system to efficiently rescue clinical samples or low-passage viral isolates could be useful for assessing the virological and molecular characteristics of DENV that could be related to disease pathogenesis.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Research Institute for Microbial Diseases (RIMD), Osaka University, Tiwanon Road, Muang, Nonthaburi 11000, Thailand.
| | | | | | | | | |
Collapse
|
12
|
Comparative analysis of American Dengue virus type 1 full-genome sequences. Virus Genes 2009; 40:60-6. [PMID: 19997970 DOI: 10.1007/s11262-009-0428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
Abstract
Dengue virus (DENV; Genus Flavivirus, Family Flaviviridae) has been circulating in Brazil since at least the mid-1980s and continues to be responsible for sporadic cases of Dengue fever and Dengue hemorrhagic fever throughout this country. Here, we describe the full genomes of two new Brazilian DENV-serotype 1 (DENV-1) variants and analyze these together with all other available American DENV-1 full-genome sequences. Besides confirming the existence of various country-specific DENV-1 founder effects that have produced a high degree of geographical structure in the American DENV-1 population, we also identify that one of the new viruses is one of only three detectable intra-American DENV-1 recombinants. Although such obvious evidence of genetic exchange among epidemiologically unlinked Latin American DENV-1 sequences is relatively rare, we find that at the population-scale there exists substantial evidence of pervasive recombination that most likely occurs between viruses that are so genetically similar that it is not possible to reliably distinguish and characterize individual recombination events.
Collapse
|
13
|
Genetic analysis of dengue virus type 3 isolated in Buenos Aires, Argentina. Virus Res 2008; 135:83-8. [PMID: 18400327 DOI: 10.1016/j.virusres.2008.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/20/2022]
Abstract
Dengue virus as a member of mosquito-borne flaviviruses is responsible for an increasing number of human infections worldwide, mainly in tropical and subtropical urban areas. The agent, a single-stranded positive sense RNA virus, is comprised of four serotypes and genetic variation within each serotype can be further divided into different genotypes. Dengue outbreaks were reported in bordering countries during the last years; the latest reported in Paraguay in 2006-2007. In Buenos Aires, 32 dengue cases were confirmed in travelers coming from this country by anti-dengue IgM antibodies detection, RT-PCR and/or isolation in C6/36 cell line. Structural proteins C, prM/M, E and non-structural proteins 1 and 2 from eight viruses were genetically characterized. Phylogenetic inference was performed for the E-protein and all viruses clustered with dengue virus 3 Genotype III. This is the first report of genetic characterization of dengue virus 3 in Argentina.
Collapse
|
14
|
Vezzani D, Carbajo AE. Aedes aegypti, Aedes albopictus, and dengue in Argentina: current knowledge and future directions. Mem Inst Oswaldo Cruz 2008; 103:66-74. [DOI: 10.1590/s0074-02762008005000003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 01/08/2008] [Indexed: 11/22/2022] Open
|
15
|
Regato M, Recarey R, Moratorio G, de Mora D, Garcia-Aguirre L, Gónzalez M, Mosquera C, Alava A, Fajardo A, Alvarez M, D' Andrea L, Dubra A, Martínez M, Khan B, Cristina J. Phylogenetic analysis of the NS5 gene of dengue viruses isolated in Ecuador. Virus Res 2007; 132:197-200. [PMID: 18063164 DOI: 10.1016/j.virusres.2007.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/10/2007] [Accepted: 10/17/2007] [Indexed: 11/18/2022]
Abstract
Dengue virus (DENV) is a member of the genus Flavivirus of the family Flaviviridae. DENV causes a wide range of diseases in humans, from the acute febrile illness dengue fever (DF) to life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There is not knowledge of the genetic relations among DENV circulating in Ecuador. Given the emerging behaviour of DENV, a single tube RT-PCR assay using a pair of consensus primers to target the NS5 coding region has been recently validated for rapid detection of flaviviruses. In order to gain insight into the degree of genetic variation of DENV strains isolated in Ecuador, DENV NS5 sequences from 23 patients were obtained by direct sequencing of PCR fragments using the mentioned one step RT-PCR assay. Phylogenetic analysis carried out using the 23 Ecuadorian DENV NS5 sequences, as well as 56 comparable sequences from DENV strains isolated elsewhere, revealed a close genetic relation among Ecuadorian strains and DENV isolates of Caribbean origin. The use of partial NS5 gene sequences may represent a useful alternative for a rapid phylogenetic analysis of DENV outbreaks.
Collapse
Affiliation(s)
- Mary Regato
- Instituto Nacional de Higiene y Medicina Tropical Leopoldo Inquieta Perez, Julian Coronel 905 y Esmeraldas, Guayaquil, Ecuador
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nukui Y, Tajima S, Kotaki A, Ito M, Takasaki T, Koike K, Kurane I. Novel dengue virus type 1 from travelers to Yap State, Micronesia. Emerg Infect Dis 2006; 12:343-6. [PMID: 16494770 PMCID: PMC3373118 DOI: 10.3201/eid1202.050733] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dengue virus type 1 (DENV-1), which was responsible for the dengue fever outbreak in Yap State, Micronesia, in 2004, was isolated from serum samples of 4 dengue patients in Japan. Genome sequencing demonstrated that this virus belonged to genotype IV and had a 29-nucleotide deletion in the 3´ noncoding region.
Collapse
Affiliation(s)
- Yoko Nukui
- National Institute of Infectious Diseases, Tokyo, Japan
- University of Tokyo, Tokyo, Japan
| | | | - Akira Kotaki
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Mikako Ito
- National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Ichiro Kurane
- National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|