1
|
Abstract
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions. Many of these continue to be hot topics in evolutionary biology, or have been identified recently as such, including (i) host-range evolution, (ii) predicting the overcoming of resistance in crops, (iii) trade-offs between virus life-history traits in virus evolution, and (iv) the codivergence of viruses and hosts at different taxonomical and spatial scales. Tobamoviruses may be particularly appropriate to address these topics with plant viruses, as they provide convenient experimental systems, and as the detailed knowledge on their molecular and structural biology allows the analysis of the mechanisms behind evolutionary processes. Also, the extensive information on parameters related to infection dynamics and population structure may facilitate the development of realistic models to predict virus evolution. Certainly, tobamoviruses will continue to be favorite system for the study of virus evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Maayan Y, Pandaranayaka EPJ, Srivastava DA, Lapidot M, Levin I, Dombrovsky A, Harel A. Using genomic analysis to identify tomato Tm-2 resistance-breaking mutations and their underlying evolutionary path in a new and emerging tobamovirus. Arch Virol 2018; 163:1863-1875. [PMID: 29582165 DOI: 10.1007/s00705-018-3819-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
In September 2014, a new tobamovirus was discovered in Israel that was able to break Tm-2-mediated resistance in tomato that had lasted 55 years. The virus was isolated, and sequencing of its genome showed it to be tomato brown rugose fruit virus (ToBRFV), a new tobamovirus recently identified in Jordan. Previous studies on mutant viruses that cause resistance breaking, including Tm-2-mediated resistance, demonstrated that this phenotype had resulted from only a few mutations. Identification of important residues in resistance breakers is hindered by significant background variation, with 9-15% variability in the genomic sequences of known isolates. To understand the evolutionary path leading to the emergence of this resistance breaker, we performed a comprehensive phylogenetic analysis and genomic comparison of different tobamoviruses, followed by molecular modeling of the viral helicase. The phylogenetic location of the resistance-breaking genes was found to be among host-shifting clades, and this, together with the observation of a relatively low mutation rate, suggests that a host shift contributed to the emergence of this new virus. Our comparative genomic analysis identified twelve potential resistance-breaking mutations in the viral movement protein (MP), the primary target of the related Tm-2 resistance, and nine in its replicase. Finally, molecular modeling of the helicase enabled the identification of three additional potential resistance-breaking mutations.
Collapse
Affiliation(s)
- Yonatan Maayan
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Eswari P J Pandaranayaka
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Dhruv Aditya Srivastava
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Moshe Lapidot
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Ilan Levin
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Arye Harel
- Department of Vegetable and Field Crop Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
3
|
Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population. J Virol 2015; 89:4760-9. [PMID: 25673712 DOI: 10.1128/jvi.03685-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED RNA viruses exist within a host as a population of mutant sequences, often referred to as quasispecies. Within a host, sequences of RNA viruses constitute several distinct but interconnected pools, such as RNA packed in viral particles, double-stranded RNA, and virus-derived small interfering RNAs. We aimed to test if the same representation of within-host viral population structure could be obtained by sequencing different viral sequence pools. Using ultradeep Illumina sequencing, the diversity of two coexisting Potato virus Y sequence pools present within a plant was investigated: RNA isolated from viral particles and virus-derived small interfering RNAs (the derivatives of a plant RNA silencing mechanism). The mutational landscape of the within-host virus population was highly similar between both pools, with no notable hotspots across the viral genome. Notably, all of the single-nucleotide polymorphisms with a frequency of higher than 1.6% were found in both pools. Some unique single-nucleotide polymorphisms (SNPs) with very low frequencies were found in each of the pools, with more of them occurring in the small RNA (sRNA) pool, possibly arising through genetic drift in localized virus populations within a plant and the errors introduced during the amplification of silencing signal. Sequencing of the viral particle pool enhanced the efficiency of consensus viral genome sequence reconstruction. Nonhomologous recombinations were commonly detected in the viral particle pool, with a hot spot in the 3' untranslated and coat protein regions of the genome. We stress that they present an important but often overlooked aspect of virus population diversity. IMPORTANCE This study is the most comprehensive whole-genome characterization of a within-plant virus population to date and the first study comparing diversity of different pools of viral sequences within a host. We show that both virus-derived small RNAs and RNA from viral particles could be used for diversity assessment of within-plant virus population, since they show a highly congruent portrayal of the virus mutational landscape within a plant. The study is an important baseline for future studies of virus population dynamics, for example, during the adaptation to a new host. The comparison of the two virus sequence enrichment techniques, sequencing of virus-derived small interfering RNAs and RNA from purified viral particles, shows the strength of the latter for the detection of recombinant viral genomes and reconstruction of complete consensus viral genome sequence.
Collapse
|
4
|
Abstract
ABSTRACT: It is well established that RNA viruses show extremely high mutation rates, but less attention has been paid to the fact that their mutation rates also vary strongly, from 10-6 to 10-4 substitutions per nucleotide per cell infection. The causes explaining this variability are still poorly understood, but candidate factors are the viral genome size and polarity, host-specific gene expression patterns, or the intracellular environment. Differences between animal and plant viruses, or between arthropod-borne and directly transmitted viruses have also been postulated. Finally, RNA viruses may be able to regulate the rate at which new mutations spread in the population by modifying features of the viral infection cycle, such as lysis time.
Collapse
Affiliation(s)
- Marine Combe
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Valencia, Spain
- Departament de Genetica, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
5
|
Simmons HE, Holmes EC, Stephenson AG. Rapid turnover of intra-host genetic diversity in Zucchini yellow mosaic virus. Virus Res 2010; 155:389-96. [PMID: 21138748 DOI: 10.1016/j.virusres.2010.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/08/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Genetic diversity in RNA viruses is shaped by a variety of evolutionary processes, including the bottlenecks that may occur at inter-host transmission. However, how these processes structure genetic variation at the scale of individual hosts is only partly understood. We obtained intra-host sequence data for the coat protein (CP) gene of Zucchini yellow mosaic virus (ZYMV) from two horizontally transmitted populations - one via aphid, the other without - and with multiple samples from individual plants. We show that although mutations are generated relatively frequently within infected plants, attaining similar levels of genetic diversity to that seen in some animal RNA viruses (mean intra-sample diversity of 0.02%), most mutations are likely to be transient, deleterious, and purged rapidly. We also observed more population structure in the aphid transmitted viral population, including the same mutations in multiple clones, the presence of a sub-lineage, and evidence for the short-term complementation of defective genomes.
Collapse
Affiliation(s)
- Heather E Simmons
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
6
|
Acosta-Leal R, Fawley MW, Rush CM. Changes in the intraisolate genetic structure of Beet necrotic yellow vein virus populations associated with plant resistance breakdown. Virology 2008; 376:60-8. [PMID: 18423510 DOI: 10.1016/j.virol.2008.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/30/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
The causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), typically produces asymptomatic root-limited infections in sugar beets (Beta vulgaris) carrying the Rz1-allele. Unfortunately, this dominant resistance has been recently overcome. Multiple cDNA clones of the viral pathogenic determinant p25, derived from populations infecting susceptible or resistant plants, were sequenced to identify host effects on the viral population structure. Populations isolated from compatible plant-virus interactions (susceptible plant-wild type virus and resistant plant-resistant breaking variants) were large and relatively homogeneous, whereas those from the incompatible interaction (resistant plant-avirulent type virus) were small and highly heterogeneous. All populations from susceptible plants had the same dominant haplotype, whereas those from resistant cultivars had a different haplotype surrounded by a spectrum of mutants. Selection and diversification analyses suggest an evolutionary trajectory of BNYVV with positive selection for changes required to overcome resistance, followed by elimination of hitchhiking mutations through purifying selection.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- Texas A&M University, Texas Agricultural Research Station, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
7
|
Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9:267-76. [PMID: 18319742 DOI: 10.1038/nrg2323] [Citation(s) in RCA: 1039] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding the factors that determine the rate at which genomes generate and fix mutations provides important insights into key evolutionary mechanisms. We review our current knowledge of the rates of mutation and substitution, as well as their determinants, in RNA viruses, DNA viruses and retroviruses. We show that the high rate of nucleotide substitution in RNA viruses is matched by some DNA viruses, suggesting that evolutionary rates in viruses are explained by diverse aspects of viral biology, such as genomic architecture and replication speed, and not simply by polymerase fidelity.
Collapse
Affiliation(s)
- Siobain Duffy
- Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
8
|
Duffy S, Holmes EC. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol 2008; 82:957-65. [PMID: 17977971 PMCID: PMC2224568 DOI: 10.1128/jvi.01929-07] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/22/2007] [Indexed: 01/04/2023] Open
Abstract
Geminiviruses are devastating viruses of plants that possess single-stranded DNA (ssDNA) DNA genomes. Despite the importance of this class of phytopathogen, there have been no estimates of the rate of nucleotide substitution in the geminiviruses. We report here the evolutionary rate of the tomato yellow leaf curl disease-causing viruses, an intensively studied group of monopartite begomoviruses. Sequences from GenBank, isolated from diseased plants between 1988 and 2006, were analyzed using Bayesian coalescent methods. The mean genomic substitution rate was estimated to be 2.88 x 10(-4) nucleotide substitutions per site per year (subs/site/year), although this rate could be confounded by frequent recombination within Tomato yellow leaf curl virus genomes. A recombinant-free data set comprising the coat protein (V1) gene in isolation yielded a similar mean rate (4.63 x 10(-4) subs/site/year), validating the order of magnitude of genomic substitution rate for protein-coding regions. The intergenic region, which is known to be more variable, was found to evolve even more rapidly, with a mean substitution rate of approximately 1.56 x 10(-3) subs/site/year. Notably, these substitution rates, the first reported for a plant DNA virus, are in line with those estimated previously for mammalian ssDNA viruses and RNA viruses. Our results therefore suggest that the high evolutionary rate of the geminiviruses is not primarily due to frequent recombination and may explain their ability to emerge in novel hosts.
Collapse
Affiliation(s)
- Siobain Duffy
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|