1
|
Qi YH, Ye ZX, Zhang CX, Chen JP, Li JM. Diversity of RNA viruses in agricultural insects. Comput Struct Biotechnol J 2023; 21:4312-4321. [PMID: 37711182 PMCID: PMC10497914 DOI: 10.1016/j.csbj.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.
Collapse
Affiliation(s)
- Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Yong CY, Yeap SK, Omar AR, Tan WS. Advances in the study of nodavirus. PeerJ 2017; 5:e3841. [PMID: 28970971 PMCID: PMC5622607 DOI: 10.7717/peerj.3841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022] Open
Abstract
Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Doan QK, Vandeputte M, Chatain B, Morin T, Allal F. Viral encephalopathy and retinopathy in aquaculture: a review. JOURNAL OF FISH DISEASES 2017; 40:717-742. [PMID: 27633881 DOI: 10.1111/jfd.12541] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN), is a major devastating threat for aquatic animals. Betanodaviruses have been isolated in at least 70 aquatic animal species in marine and in freshwater environments throughout the world, with the notable exception of South America. In this review, the main features of betanodavirus, including its diversity, its distribution and its transmission modes in fish, are firstly presented. Then, the existing diagnosis and detection methods, as well as the different control procedures of this disease, are reviewed. Finally, the potential of selective breeding, including both conventional and genomic selection, as an opportunity to obtain resistant commercial populations, is examined.
Collapse
Affiliation(s)
- Q K Doan
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- TNU, Thai Nguyen University of Agriculture and Forestry (TUAF), Quyet Thang Commune, Thai Nguyen City, Vietnam
| | - M Vandeputte
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
- INRA, GABI, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - B Chatain
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| | - T Morin
- Anses, Ploufragan-Plouzané Laboratory, Unit Viral Diseases of Fish, Plouzané, France
| | - F Allal
- Ifremer, UMR 9190 MARBEC, Palavas-les-Flots, France
| |
Collapse
|
4
|
Somrit M, Watthammawut A, Chotwiwatthanakun C, Ounjai P, Suntimanawong W, Weerachatyanukul W. C-terminal domain on the outer surface of the Macrobrachium rosenbergii nodavirus capsid is required for Sf9 cell binding and internalization. Virus Res 2017; 227:41-48. [DOI: 10.1016/j.virusres.2016.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
5
|
A unique nodavirus with novel features: mosinovirus expresses two subgenomic RNAs, a capsid gene of unknown origin, and a suppressor of the antiviral RNA interference pathway. J Virol 2014; 88:13447-59. [PMID: 25210176 DOI: 10.1128/jvi.02144-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Insects are a reservoir for many known and novel viruses. We discovered an unknown virus, tentatively named mosinovirus (MoNV), in mosquitoes from a tropical rainforest region in Côte d'Ivoire. The MoNV genome consists of two segments of positive-sense RNA of 2,972 nucleotides (nt) (RNA 1) and 1,801 nt (RNA 2). Its putative RNA-dependent RNA polymerase shares 43% amino acid identity with its closest relative, that of the Pariacoto virus (family Nodaviridae). Unexpectedly, for the putative capsid protein, maximal pairwise identity of 16% to Lake Sinai virus 2, an unclassified virus with a nonsegmented RNA genome, was found. Moreover, MoNV virions are nonenveloped and about 50 nm in diameter, larger than any of the known nodaviruses. Mature MoNV virions contain capsid proteins of ∼ 56 kDa, which do not seem to be cleaved from a longer precursor. Northern blot analyses revealed that MoNV expresses two subgenomic RNAs of 580 nt (RNA 3) and 292 nt (RNA 4). RNA 4 encodes a viral suppressor of RNA interference (RNAi) that shares its mechanism with the B2 RNAi suppressor protein of other nodaviruses despite lacking recognizable similarity to these proteins. MoNV B2 binds long double-stranded RNA (dsRNA) and, accordingly, inhibits Dicer-2-mediated processing of dsRNA into small interfering RNAs (siRNAs). Phylogenetic analyses indicate that MoNV is a novel member of the family Nodaviridae that acquired its capsid gene via reassortment from an unknown, distantly related virus beyond the family level. IMPORTANCE The identification of novel viruses provides important information about virus evolution and diversity. Here, we describe an unknown unique nodavirus in mosquitoes, named mosinovirus (MoNV). MoNV was classified as a nodavirus based on its genome organization and on phylogenetic analyses of the RNA-dependent RNA polymerase. Notably, its capsid gene was acquired from an unknown virus with a distant relationship to nodaviruses. Another remarkable feature of MoNV is that, unlike other nodaviruses, it expresses two subgenomic RNAs (sgRNAs). One of the sgRNAs expresses a protein that counteracts antiviral defense of its mosquito host, whereas the function of the other sgRNA remains unknown. Our results show that complete genome segments can be exchanged beyond the species level and suggest that insects harbor a large repertoire of exceptional viruses.
Collapse
|
6
|
Wu W, Wang Z, Xia H, Liu Y, Qiu Y, Liu Y, Hu Y, Zhou X. Flock house virus RNA polymerase initiates RNA synthesis de novo and possesses a terminal nucleotidyl transferase activity. PLoS One 2014; 9:e86876. [PMID: 24466277 PMCID: PMC3900681 DOI: 10.1371/journal.pone.0086876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/18/2013] [Indexed: 12/26/2022] Open
Abstract
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3'-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3' initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.
Collapse
Affiliation(s)
- Wenzhe Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongjie Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yongxiang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yujie Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuanyang Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
7
|
Qiu Y, Wang Z, Liu Y, Qi N, Si J, Xiang X, Xia X, Hu Y, Zhou X. Newly discovered insect RNA viruses in China. SCIENCE CHINA-LIFE SCIENCES 2013; 56:711-4. [PMID: 23917843 DOI: 10.1007/s11427-013-4520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 02/02/2023]
Abstract
Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Genetic analysis of RNA1 and RNA2 of Macrobrachium rosenbergii nodavirus (MrNV) isolated from India. Virus Res 2013; 173:377-85. [DOI: 10.1016/j.virusres.2013.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/28/2012] [Accepted: 01/04/2013] [Indexed: 11/23/2022]
|
9
|
Qiu Y, Wang Z, Liu Y, Qi N, Miao M, Si J, Xiang X, Cai D, Hu Y, Zhou X. Membrane association of Wuhan nodavirus protein A is required for its ability to accumulate genomic RNA1 template. Virology 2013; 439:140-51. [PMID: 23490047 DOI: 10.1016/j.virol.2013.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 02/13/2013] [Indexed: 01/13/2023]
Abstract
One common feature of positive-strand RNA viruses is the association of viral RNA and viral RNA replicase proteins with specific intracellular membranes to form RNA replication complexes. Wuhan nodavirus (WhNV) encodes protein A, which is the sole viral RNA replicase. Here, we showed that WhNV protein A closely associates with mitochondrial outer membranes and colocalizes with viral RNA replication sites. We further identified the transmembrane domains (N-terminal aa 33-64 and aa 212-254) of protein A for membrane association and mitochondrial localization. Moreover, we found that protein A accumulates genomic RNA by stabilizing the RNA. And our further investigation revealed that the ability of WhNV protein A to associate with membranes is closely linked with its ability for membrane recruitment and stabilization of viral genomic RNA templates. This study represents an advance toward understanding the mechanism of the RNA replication of WhNV and probably other nodaviruses.
Collapse
Affiliation(s)
- Yang Qiu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marklewitz M, Gloza-Rausch F, Kurth A, Kümmerer BM, Drosten C, Junglen S. First isolation of an Entomobirnavirus from free-living insects. J Gen Virol 2012; 93:2431-2435. [PMID: 22875257 DOI: 10.1099/vir.0.045435-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drosophila X virus (DXV), the prototype Entomobirnavirus, is a well-studied RNA virus model. Its origin is unknown, and so is that of the only other entomobirnavirus, Espirito Santo virus (ESV). We isolated an entomobirnavirus tentatively named Culex Y virus (CYV) from hibernating Culex pipiens complex mosquitoes in Germany. CYV was detected in three pools consisting of 11 mosquitoes each. Full-genome sequencing and phylogenetic analyses suggested that CYV and ESV define one sister species to DXV within the genus Entomobirnavirus. In contrast to the laboratory-derived ESV, the ORF5 initiation codon AUG was mutated to (1927)GUG in all three wild-type CYV isolates. Also in contrast to ESV, replication of CYV was not dependent on other viruses in insect cell culture. CYV could provide a wild-type counterpart in research fields relying on DXV and other cell culture-adapted strains.
Collapse
Affiliation(s)
- Marco Marklewitz
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | | | - Andreas Kurth
- Center for Biological Safety-1, Robert Koch-Institute, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
11
|
Targeting of dicer-2 and RNA by a viral RNA silencing suppressor in Drosophila cells. J Virol 2012; 86:5763-73. [PMID: 22438534 DOI: 10.1128/jvi.07229-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) is a eukaryotic gene-silencing mechanism that functions in antiviral immunity in diverse organisms. To combat RNAi-mediated immunity, viruses encode viral suppressors of RNA silencing (VSRs) that target RNA and protein components in the RNAi machinery. Although the endonuclease Dicer plays key roles in RNAi immunity, little is known about how VSRs target Dicer. Here, we show that the B2 protein from Wuhan nodavirus (WhNV), the counterpart of Flock House virus (FHV), suppresses Drosophila melanogaster RNAi by directly interacting with Dicer-2 (Dcr-2) and sequestering double-stranded RNA (dsRNA) and small interfering RNA (siRNA). Further investigations reveal that WhNV B2 binds to the RNase III and Piwi-Argonaut-Zwille (PAZ) domains of Dcr-2 via its C-terminal region, thereby blocking the activities of Dcr-2 in processing dsRNA and incorporating siRNA into the RNA-induced silencing complex (RISC). Moreover, we uncover an interrelationship among diverse activities of WhNV B2, showing that RNA binding enhances the B2-Dcr-2 interaction by promoting B2 homodimerization. Taken together, our findings establish a model of suppression of Drosophila RNAi by WhNV B2 targeting both Dcr-2 and RNA and provide evidence that an interrelationship exists among diverse activities of VSRs to antagonize RNAi.
Collapse
|
12
|
RNA binding by a novel helical fold of b2 protein from wuhan nodavirus mediates the suppression of RNA interference and promotes b2 dimerization. J Virol 2011; 85:9543-54. [PMID: 21734038 DOI: 10.1128/jvi.00785-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wuhan nodavirus (WhNV) is a newly identified member of the Nodaviridae family with a bipartite genome of positive-sense RNAs. A nonstructural protein encoded by subgenomic RNA3 of nodaviruses, B2, serves as a potent RNA silencing suppressor (RSS) by sequestering RNA duplexes. We have previously demonstrated that WhNV B2 blocks RNA silencing in cultured Drosophila cells. However, the molecular mechanism by which WhNV B2 functions remains unknown. Here, we successfully established an RNA silencing system in cells derived from Pieris rapae, a natural host of WhNV, by introducing into these cells double-stranded RNA (dsRNA)-expressing plasmids or chemically synthesized small interfering RNAs (siRNAs). Using this system, we revealed that the WhNV B2 protein inhibited Dicer-mediated dsRNA cleavage and the incorporation of siRNA into the RNA-induced silencing complex (RISC) by sequestering dsRNA and siRNA. Based on the modeled B2 3-dimensional structure, serial single alanine replacement mutations and N-terminal deletion analyses showed that the RNA-binding domain of B2 is formed by its helices α2 and α3, while helix α1 mediates B2 dimerization. Furthermore, positive feedback between RNA binding and B2 dimerization was uncovered by gel shift assay and far-Western blotting, revealing that B2 dimerization is required for its binding to RNA, whereas RNA binding to B2 in turn promotes its dimerization. All together, our findings uncovered a novel RNA-binding mode of WhNV B2 and provided evidence that the promotion effect of RNA binding on dimerization exists in a viral RSS protein.
Collapse
|
13
|
Internal initiation is responsible for synthesis of Wuhan nodavirus subgenomic RNA. J Virol 2011; 85:4440-51. [PMID: 21325414 DOI: 10.1128/jvi.02410-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nodaviruses are small nonenveloped spherical viruses with a bipartite genome of RNAs. In nodaviruses, subgenomic RNA3 (sgRNA3) plays a critical role in viral replication and survival, as it coordinates the replication of two viral genomic RNAs (RNA1 and RNA2) and encodes protein B2, which is a potent RNA-silencing inhibitor. Despite its importance, the molecular mechanism of nodaviral sgRNA3 synthesis is still poorly understood. Here, we propose that sgRNA3 of Wuhan nodavirus (WhNV) is internally initiated from a promoter on the negative template of genomic RNA1. Serial deletion and mutation analyses further revealed that the core promoter of WhNV sgRNA3 is between nucleotide positions -22 and +6 of its transcription start site. Besides, a stem-loop structure of WhNV sgRNA3 was computationally predicted upstream of sgRNA3's transcription start site. Both the secondary structure and the primary sequence were determined to be required for promoter activity. Furthermore, our results show that the synthesis of WhNV sgRNA3 is counterregulated by the replication of WhNV genomic RNA2, which encodes a viral capsid precursor protein. And this sgRNA3 synthesis is also able to trans-activate the replication of RNA2. Altogether, findings in this study indicate that there is a newly discovered internal initiation model for the synthesis of nodaviral sgRNA.
Collapse
|
14
|
Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol 2010; 84:6955-65. [PMID: 20463061 DOI: 10.1128/jvi.00501-10] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.
Collapse
|
15
|
Cai D, Qiu Y, Qi N, Yan R, Lin M, Nie D, Zhang J, Hu Y. Characterization of Wuhan Nodavirus subgenomic RNA3 and the RNAi inhibition property of its encoded protein B2. Virus Res 2010; 151:153-61. [PMID: 20441781 DOI: 10.1016/j.virusres.2010.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Wuhan Nodavirus (WhNV) is the first reported nodavirus isolated from insect in China. The viral genome consists of two positive-strand RNA, RNA1 and RNA2. RNA1 is 3149 nucleotides in length, and contains three putative Open Reading Frames (ORFs) which encode proteins A, B1 and B2, respectively. In contrast, only one putative ORF encoding protein alpha was identified within 1562-nt-long RNA2 species. Here, we report the newly characterized molecular properties of WhNV subgenomic RNA3 and its encoded protein B2. We have successfully multiplied WhNV in the natural host Pieris rapae larvae under laboratory conditions. WhNV replication in the host cells resulted in the expression of viral proteins, ProA, B2 and Proalpha, with the absence of B1 production. Northern blot hybridization assay revealed the existence of subgenomic RNA3 which is 5' capped and 3' co-terminal with RNA1. The subgenomic RNA3 is 370 nucleotides in length and contains only one ORF (B2) with the first AUG as the authentic initiation codon. In addition, we found that nonstructural protein B2 of WhNV is an efficient RNA interference (RNAi) suppressor in a cultured drosophila cell line. The amino-terminal region (aa 1-20) of B2 is essential for this RNAi inhibition activity.
Collapse
Affiliation(s)
- Dawei Cai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A 2010; 107:1606-11. [PMID: 20080648 DOI: 10.1073/pnas.0911353107] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In response to infection, invertebrates process replicating viral RNA genomes into siRNAs of discrete sizes to guide virus clearance by RNA interference. Here, we show that viral siRNAs sequenced from fruit fly, mosquito, and nematode cells were all overlapping in sequence, suggesting a possibility of using siRNAs for viral genome assembly and virus discovery. To test this idea, we examined contigs assembled from published small RNA libraries and discovered five previously undescribed viruses from cultured Drosophila cells and adult mosquitoes, including three with a positive-strand RNA genome and two with a dsRNA genome. Notably, four of the identified viruses exhibited only low sequence similarities to known viruses, such that none could be assigned into an existing virus genus. We also report detection of virus-derived PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster that have not been previously described in any other host species and demonstrate viral genome assembly from viral piRNAs in the absence of viral siRNAs. Thus, this study provides a powerful culture-independent approach for virus discovery in invertebrates by assembling viral genomes directly from host immune response products without prior virus enrichment or amplification. We propose that invertebrate viruses discovered by this approach may include previously undescribed human and vertebrate viral pathogens that are transmitted by arthropod vectors.
Collapse
|