1
|
Ma C, Zhang X, You J, Dong M, Yun S, Liu J. Effect of heat shock on murine norovirus replication in RAW264.7 cells. Microb Pathog 2020; 142:104102. [PMID: 32112809 DOI: 10.1016/j.micpath.2020.104102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Murine norovirus (MNV), is a prevalent pathogen of laboratory mice closely related to human norovirus (HuNoV), a contagious pathogen known to cause gastroenteritis worldwide; however, the mechanism of norovirus replication remains poorly understood. Both heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) play an important role in viral genome replication and viral gene expression. In this study, we first found that heat stress exerted a positive effect on the replication of MNV in the murine macrophage RAW264.7 cell line. Inhibition of Hsp70 and Hsp90 by the specific inhibitors, KNK437 and 17-AGG, respectively showed that Hsp70 and Hsp90 enhanced MNV genome replication and virion production. In addition, we found that KNK437 and 17-AGG could decrease the level of IL-1β, IL-10, and TNF-α mRNA expression in MNV-infected cells. These data suggested that heat stress can positively regulate MNV replication, which advances our understanding of the molecular mechanism of MNV infection.
Collapse
Affiliation(s)
- Chang Ma
- Department of Comparative Medicine, Jinling Hospital, Nanjing, PR China
| | - Xuliang Zhang
- Department of Comparative Medicine, Jinling Hospital, Nanjing, PR China
| | - Jinwei You
- Department of Comparative Medicine, Jinling Hospital, Nanjing, PR China
| | - Min Dong
- Department of Comparative Medicine, Jinling Hospital, Nanjing, PR China
| | - Shifeng Yun
- Department of Comparative Medicine, Jinling Hospital, Nanjing, PR China; Clinical School of Medical College of Nanjing University, Nanjing, PR China.
| | - Jie Liu
- Department of Comparative Medicine, Jinling Hospital, Nanjing, PR China.
| |
Collapse
|
2
|
López T, López S, Arias CF. The tyrosine kinase inhibitor genistein induces the detachment of rotavirus particles from the cell surface. Virus Res 2015. [PMID: 26216271 DOI: 10.1016/j.virusres.2015.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Group A rotaviruses are a major cause of severe gastroenteritis in young infants. In this work we evaluated the potential role of protein tyrosine kinases on rotavirus infectivity and viral progeny production. From the broad-spectrum inhibitors tested, only genistein, a flavonoid, inhibited rotavirus infectivity. The inhibition observed was dose and strain dependent, with more than 10-fold IC50 differences for some rotavirus strains, and the effect of the drug was shown to be dependent of their activity as a protein tyrosine kinase inhibitor, since the inactive analogue of genistein, daidzein, had no effect on virus infection. Investigation of the stage of virus replication blocked by the drug showed that it interferes with the early interactions of the virus with receptors and/or co-receptors, since treatment of the cells with genistein promoted the detachment of the virus from the cell surface.
Collapse
Affiliation(s)
- Tomás López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
3
|
Guerrero CA, Torres DP, García LL, Guerrero RA, Acosta O. N-Acetylcysteine treatment of rotavirus-associated diarrhea in children. Pharmacotherapy 2014; 34:e333-40. [PMID: 25251886 DOI: 10.1002/phar.1489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rotaviruses are the leading cause of severe, acute, and dehydrating diarrhea affecting children under 5 years of age worldwide. Despite an important reduction in rotavirus-caused deaths as a consequence of the rotavirus vaccine, alternative or complementary strategies for preventing or treating rotavirus-associated diarrhea are needed mainly in the poorest countries. We describe the cases of four rotavirus-unvaccinated 12-13-month-old girls and a 5-year-old boy who developed rotavirus-associated diarrhea confirmed by enzyme-linked immunosorbent assay, Western blotting, and immunochemistry analyses. After the first day of diarrheal episodes, three of the five patients were immediately administered oral N-acetylcysteine (NAC) 60 mg/kg daily, divided into three equal doses every 8 hours. The other two patients did not receive NAC and served as controls. Administration of NAC resulted in a decreased number of diarrheal episodes, excretion of fecal rotavirus antigen, and resolution of symptoms after 2 days of treatment. Our results suggest that NAC treatment after the first diarrheal episode could be an efficient strategy for treating rotavirus-affected children and preventing the associated severe life-threatening accompanying dehydration.
Collapse
Affiliation(s)
- Carlos A Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, D.C, Colombia
| | | | | | | | | |
Collapse
|
4
|
Liu J, Bai J, Zhang L, Jiang Z, Wang X, Li Y, Jiang P. Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology 2013; 447:52-62. [PMID: 24210099 DOI: 10.1016/j.virol.2013.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/26/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022]
Abstract
The Hsp70 chaperone plays a central role in multiple processes within cells. Porcine circovirus type 2 (PCV2) is the essential causal agent of post-weaning multisystemic wasting syndrome (PMWS), which has spread worldwide. But the mechanism of PCV2 replication remains poorly understood. In this study, we firstly found the positive effect of heat stress on the replication of PCV2 in the continuous porcine monocytic cell line 3D4/31. Downregulation of Hsp70 by the specific chaperone inhibitor Quercetin or RNA interference and upregulation of Hsp70 by expression from a recombinant adenovirus showed that Hsp70 enhanced PCV2 genome replication and virion production. A specific interaction between Hsp70 and PCV2 Cap was confirmed by colocalization by confocal microscopy and co-immunoprecipitation. Furthermore, the NF-κB pathway was activated and caspase-3 activity was reduced when Hsp70 was overexpressed in PCV2-infected 3D4/31 cells. These data suggested that Hsp70 positively regulated PCV2 replication, which being helpful for understanding the molecular mechanism of PCV2 infection.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Tylosema esculentum (Marama) Tuber and Bean Extracts Are Strong Antiviral Agents against Rotavirus Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:284795. [PMID: 21423688 PMCID: PMC3057194 DOI: 10.1155/2011/284795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 12/01/2010] [Accepted: 01/09/2011] [Indexed: 12/24/2022]
Abstract
Tylosema esculentum (marama) beans and tubers are used as food, and traditional medicine against diarrhoea in Southern Africa. Rotaviruses (RVs) are a major cause of diarrhoea among infants, young children, immunocompromised people, and domesticated animals. Our work is first to determine anti-RV activity of marama bean and tuber ethanol and water extracts; in this case on intestinal enterocyte cells of human infant (H4), adult pig (CLAB) and adult bovine (CIEB) origin. Marama cotyledon ethanolic extract (MCE) and cotyledon water extract (MCW) without RV were not cytotoxic to all cells tested, while seed coat and tuber extracts showed variable levels of cytotoxicity. Marama cotyledon ethanolic and water extracts (MCE and MCW, resp.) (≥0.1 mg/mL), seed coat extract (MSCE) and seed coat water extract (MSCW) (0.01 to 0.001 mg/mL), especially ethanolic, significantly increased cell survival and enhanced survival to cytopathic effects of RV by at least 100% after in vitro co- and pre-incubation treatments. All marama extracts used significantly enhanced nitric oxide release from H4 cells and enhanced TER (Ω/cm2) of enterocyte barriers after coincubation with RV. Marama cotyledon and seed coat extracts inhibited virion infectivity possibly through interference with replication due to accumulation of nitric oxide. Marama extracts are therefore promising microbicides against RV.
Collapse
|
6
|
Berting A, Farcet MR, Kreil TR. Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnol Bioeng 2010; 106:598-607. [PMID: 20503298 PMCID: PMC7161873 DOI: 10.1002/bit.22723] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/21/2010] [Accepted: 03/01/2010] [Indexed: 12/21/2022]
Abstract
Biopharmaceuticals are of increasing importance in the treatment of a variety of diseases. A remaining concern associated with their production is the potential introduction of adventitious agents into their manufacturing process, which may compromise the pathogen safety of a product and potentially cause stock-out situations for important medical supplies. To ensure the safety of biological therapeutics, regulatory guidance requires adventitious agent testing (AAT) of the bulk harvest. AAT is a deliberately promiscuous assay procedure which has been developed to indicate, ideally, the presence of any viral contaminant. One of the most important cell lines used in the production of biopharmaceuticals is Chinese hamster ovary (CHO) cells and while viral infections of CHO cells have occurred, a systematic screen of their virus susceptibility has never been published. We investigated the susceptibility of CHO cells to infection by 14 different viruses, including members of 12 families and representatives or the very species that were implicated in previously reported production cell infections. Based on our results, four different infection outcomes were distinguished, based on the possible combinations of the two factors (i) the induction, or not, of a cytopathic effect and (ii) the ability, or not, to replicate in CHO cells. Our results demonstrate that the current AAT is effective for the detection of viruses which are able to replicate in CHO cells. Due to the restricted virus susceptibility of CHO cells and the routine AAT of bulk harvests, our results provide re-assurance for the very high safety margins of CHO cell-derived biopharmaceuticals.
Collapse
Affiliation(s)
- Andreas Berting
- Global Pathogen Safety, Baxter BioScience, Benatzkygasse 2‐6, 1221 Vienna, Austria; telephone: 43‐1‐20100‐3860; fax: 43‐1‐20100‐3890
| | - Maria R. Farcet
- Global Pathogen Safety, Baxter BioScience, Benatzkygasse 2‐6, 1221 Vienna, Austria; telephone: 43‐1‐20100‐3860; fax: 43‐1‐20100‐3890
| | - Thomas R. Kreil
- Global Pathogen Safety, Baxter BioScience, Benatzkygasse 2‐6, 1221 Vienna, Austria; telephone: 43‐1‐20100‐3860; fax: 43‐1‐20100‐3890
| |
Collapse
|
7
|
Abstract
Heat shock is a well-known stress response characterized by a rapid synthesis of a set of proteins which are responsible for protection against stress. We examined the role of temperature on the growth of cricket paralysis virus, a member of the family Dicistroviridae, in insect cells. Heat shock caused an induction of heat shock protein-encoding mRNAs in uninfected cells but not in infected cells. While viral RNA and protein were abundant during heat shock, virion formation was inhibited at higher temperatures. The different susceptibility to pathogens at different temperatures is likely a crucial feature of host-pathogen interaction in cold-blooded animals.
Collapse
|
8
|
Chavez-Salinas S, Ceballos-Olvera I, Reyes-Del Valle J, Medina F, Del Angel RM. Heat shock effect upon dengue virus replication into U937 cells. Virus Res 2008; 138:111-8. [PMID: 18809444 DOI: 10.1016/j.virusres.2008.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 01/12/2023]
Abstract
The molecules involved in dengue virus entry into human cells are currently unknown. We have previously shown that two surface heat shock proteins (Hsps), Hsp90 and Hsp70 are part of a receptor complex in monocytic cells. In the present report, the effect of heat shock (HS) on dengue virus infection is analyzed. We have documented a more than twofold increase in dengue virus infectivity after HS treatment in monocytic cells U937; this effect correlates mainly with an increase in viral entry due to a major presence of both Hsps on the surface of monocytic cells, particularly in membrane microdomains. Interestingly, since heat shock treatment at 6h post-infection also increased viral yields, it is likely that HS also modulates positively dengue virus replication.
Collapse
Affiliation(s)
- Salvador Chavez-Salinas
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN, Av. I.P.N. 2508, Col. San Pedro Zacatenco, México D.F. C.P. 07360, Mexico
| | | | | | | | | |
Collapse
|