1
|
Rathogwa NM, Scott KA, Opperman P, Theron J, Maree FF. Efficacy of SAT2 Foot-and-Mouth Disease Vaccines Formulated with Montanide ISA 206B and Quil-A Saponin Adjuvants. Vaccines (Basel) 2021; 9:vaccines9090996. [PMID: 34579233 PMCID: PMC8473074 DOI: 10.3390/vaccines9090996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
The effective control of foot-and-mouth disease (FMD) relies strongly on the separation of susceptible and infected livestock or susceptible livestock and persistently infected wildlife, vaccination, and veterinary sanitary measures. Vaccines affording protection against multiple serotypes for longer than six months and that are less reliant on the cold chain during handling are urgently needed for the effective control of FMD in endemic regions. Although much effort has been devoted to improving the immune responses elicited through the use of modern adjuvants, their efficacy is dependent on the formulation recipe, target species and administration route. Here we compared and evaluated the efficacy of two adjuvant formulations in combination with a structurally stabilized SAT2 vaccine antigen, designed to have improved thermostability, antigen shelf-life and longevity of antibody response. Protection mediated by the Montanide ISA 206B-adjuvanted or Quil-A Saponin-adjuvanted SAT2 vaccines were comparable. The Montanide ISA 206B-adjuvanted vaccine elicited a higher SAT2 neutralizing antibody response and three times higher levels of systemic IFN-γ responses at 14- and 28-days post-vaccination (dpv) were observed compared to the Quil-A Saponin-adjuvanted vaccine group. Interestingly, serum antibodies from the immunized animals reacted similarly to the parental vaccine virus and viruses containing mutations in the VP2 protein that simulate antigenic drift in nature.
Collapse
Affiliation(s)
- Ntungufhadzeni M. Rathogwa
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Katherine A. Scott
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
| | - Pamela Opperman
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Francois F. Maree
- Vaccines and Diagnostic Development, Onderstepoort Veterinary Research, Agricultural Research Council, Onderstepoort 0110, South Africa; (N.M.R.); (K.A.S.); (P.O.)
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Correspondence:
| |
Collapse
|
2
|
Chitray M, Kotecha A, Nsamba P, Ren J, Maree S, Ramulongo T, Paul G, Theron J, Fry EE, Stuart DI, Maree FF. Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses. PLoS Pathog 2020; 16:e1008828. [PMID: 32991636 PMCID: PMC7577442 DOI: 10.1371/journal.ppat.1008828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/21/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Field isolates of foot-and-mouth disease viruses (FMDVs) utilize integrin-mediated cell entry but many, including Southern African Territories (SAT) viruses, are difficult to adapt to BHK-21 cells, thus hampering large-scale propagation of vaccine antigen. However, FMDVs acquire the ability to bind to cell surface heparan sulphate proteoglycans, following serial cytolytic infections in cell culture, likely by the selection of rapidly replicating FMDV variants. In this study, fourteen SAT1 and SAT2 viruses, serially passaged in BHK-21 cells, were virulent in CHO-K1 cells and displayed enhanced affinity for heparan, as opposed to their low-passage counterparts. Comparative sequence analysis revealed the fixation of positively charged residues clustered close to the icosahedral 5-fold axes of the virus, at amino acid positions 83-85 in the βD-βE loop and 110-112 in the βF-βG loop of VP1 upon adaptation to cultured cells. Molecular docking simulations confirmed enhanced binding of heparan sulphate to a model of the adapted SAT1 virus, with the region around VP1 arginine 112 contributing the most to binding. Using this information, eight chimeric field strain mutant viruses were constructed with additional positive charges in repeated clusters on the virion surface. Five of these bound heparan sulphate with expanded cell tropism, which should facilitate large-scale propagation. However, only positively charged residues at position 110-112 of VP1 enhanced infectivity of BHK-21 cells. The symmetrical arrangement of even a single amino acid residue in the FMD virion is a powerful strategy enabling the virus to generate novel receptor binding and alternative host-cell interactions.
Collapse
Affiliation(s)
- Melanie Chitray
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Abhay Kotecha
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - Peninah Nsamba
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
- Makerere University, College of Veterinary Medicine, Animal Resources and Biosecurity, Kampala, Uganda
| | - Jingshan Ren
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - Sonja Maree
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
| | - Tovhowani Ramulongo
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Elizabeth E. Fry
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford, United Kingdom
| | - Francois F. Maree
- Vaccine and Diagnostic Development Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Evaluation of immune responses of stabilised SAT2 antigens of foot-and-mouth disease in cattle. Vaccine 2017; 35:5426-5433. [DOI: 10.1016/j.vaccine.2017.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022]
|
4
|
Biswal JK, Subramaniam S, Sharma GK, Mahajan S, Ranjan R, Misri J, Pattnaik B. Megaprimer-mediated capsid swapping for the construction of custom-engineered chimeric foot-and-mouth disease virus. Virus Genes 2015; 51:225-33. [PMID: 26303897 DOI: 10.1007/s11262-015-1237-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious, economically important disease of transboundary importance. Regular vaccination with chemically inactivated FMD vaccine is the major means of controlling the disease in endemic countries like India. However, the selection of appropriate candidate vaccine strain and its adaptation in cell culture to yield high titer of virus is a cumbersome process. An attractive approach to circumvent this tedious process is to replace the capsid coding sequence of an infectious full-genome length cDNA clone of a good vaccine strain with those of appropriate field strain, to produce custom-made chimeric FMD virus (FMDV). Nevertheless, the construction of chimeric virus can be difficult if the necessary endonuclease restriction sites are unavailable or unsuitable for swapping of the capsid sequence. Here we described an efficient method based on megaprimer-mediated capsid swapping for the construction of chimeric FMDV cDNA clones. Using FMDV vaccine strain A IND 40/2000 infectious clone (pA(40/2000)) as a donor plasmid, we exchanged the capsid sequence of pA(40/2000) with that of the viruses belonging to serotypes O (n = 5), A (n = 2), and Asia 1 (n = 2), and subsequently generated infectious FMDV from their respective chimeric cDNA clones. The chimeric viruses exhibited comparable infection kinetics, plaque phenotypes, antigenic profiles, and virion stability to the parental viruses. The results from this study suggest that megaprimer-based reverse genetics technology is useful for engineering chimeric vaccine strains for use in the control and prevention of FMD in endemic countries.
Collapse
Affiliation(s)
- Jitendra K Biswal
- ICAR-Project Directorate on Foot-and-mouth Disease, Mukteswar, Nainital, 263138, Uttarakhand, India.
| | - Saravanan Subramaniam
- ICAR-Project Directorate on Foot-and-mouth Disease, Mukteswar, Nainital, 263138, Uttarakhand, India
| | - Gaurav K Sharma
- ICAR-Project Directorate on Foot-and-mouth Disease, Mukteswar, Nainital, 263138, Uttarakhand, India
| | - Sonalika Mahajan
- ICAR-Project Directorate on Foot-and-mouth Disease, Mukteswar, Nainital, 263138, Uttarakhand, India
| | - Rajeev Ranjan
- ICAR-Project Directorate on Foot-and-mouth Disease, Mukteswar, Nainital, 263138, Uttarakhand, India
| | - Jyoti Misri
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001, India
| | - Bramhadev Pattnaik
- ICAR-Project Directorate on Foot-and-mouth Disease, Mukteswar, Nainital, 263138, Uttarakhand, India.
| |
Collapse
|
5
|
Lian K, Yang F, Zhu Z, Cao W, Jin Y, Li D, Zhang K, Guo J, Zheng H, Liu X. Recovery of infectious type Asia1 foot-and-mouth disease virus from suckling mice directly inoculated with an RNA polymerase I/II-driven unidirectional transcription plasmid. Virus Res 2015; 208:73-81. [PMID: 26091821 DOI: 10.1016/j.virusres.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/18/2015] [Accepted: 06/05/2015] [Indexed: 11/15/2022]
Abstract
We developed an RNA polymerase (pol) I- and II-driven plasmid-based reverse genetics system to rescue infectious foot-and-mouth disease virus (FMDV) from cloned cDNA. In this plasmid-based transfection, the full-length viral cDNA was flanked by hammerhead ribozyme (HamRz) and hepatitis delta ribozyme (HdvRz) sequences, which were arranged downstream of the two promoters (cytomegalovirus (CMV) and pol I promoter) and upstream of the terminators and polyadenylation signal, respectively. The utility of this method was demonstrated by the recovery of FMDV Asia1 HN/CHA/06 in BHK-21 cells transfected with cDNA plasmids. Furthermore, infectious FMDV Asia1 HN/CHA/06 could be rescued from suckling mice directly inoculated with cDNA plasmids. Thus, this reverse genetics system can be applied to fundamental research and vaccine studies, most notably to rescue those viruses for which there is currently an absence of a suitable cell culture system.
Collapse
Affiliation(s)
- Kaiqi Lian
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ye Jin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Maree FF, Nsamba P, Mutowembwa P, Rotherham LS, Esterhuysen J, Scott K. Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge. Vaccine 2015; 33:2909-16. [DOI: 10.1016/j.vaccine.2015.04.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
|
7
|
Determining the epitope dominance on the capsid of a serotype SAT2 foot-and-mouth disease virus by mutational analyses. J Virol 2014; 88:8307-18. [PMID: 24829347 DOI: 10.1128/jvi.00470-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Monoclonal-antibody (MAb)-resistant mutants were used to map antigenic sites on foot-and-mouth disease virus (FMDV), which resulted in the identification of neutralizing epitopes in the flexible βG-βH loop in VP1. For FMDV SAT2 viruses, studies have shown that at least two antigenic sites exist. By use of an infectious SAT2 cDNA clone, 10 structurally exposed and highly variable loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of SAT2/Zimbabwe (ZIM)/7/83 (topotype II) and replaced with the corresponding regions of SAT2/Kruger National Park (KNP)/19/89 (topotype I). Virus neutralization assays using convalescent-phase antisera raised against the parental virus, SAT2/ZIM/7/83, indicated that the mutant virus containing the TQQS-to-ETPV mutation in the N-terminal part of the βG-βH loop of VP1 showed not only a significant increase in the neutralization titer but also an increase in the index of avidity to the convalescent-phase antisera. Furthermore, antigenic profiling of the epitope-replaced and parental viruses with nonneutralizing SAT2-specific MAbs led to the identification of two nonneutralizing antigenic regions. Both regions were mapped to incorporate residues 71 to 72 of VP2 as the major contact point. The binding footprint of one of the antigenic regions encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 48 to 50 of VP1, and the second antigenic region encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 84 to 86 and 109 to 11 of VP1. This is the first time that antigenic regions encompassing residues 71 to 72 of VP2 have been identified on the capsid of a SAT2 FMDV. IMPORTANCE Monoclonal-antibody-resistant mutants have traditionally been used to map antigenic sites on foot-and-mouth disease virus (FMDV). However, for SAT2-type viruses, which are responsible for most of the FMD outbreaks in Africa and are the most varied of all seven serotypes, only two antigenic sites have been identified. We have followed a unique approach using an infectious SAT2 cDNA genome-length clone. Ten structurally surface-exposed, highly varied loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of the SAT2/ZIM/7/83 virus. These regions were replaced with the corresponding regions of an antigenically disparate virus, SAT2/KNP/19/89. Antigenic profiling of the epitope-replaced and parental viruses with SAT2-specific MAbs led to the identification of two unique antibody-binding footprints on the SAT2 capsid. In this report, evidence for the structural engineering of antigenic sites of a SAT2 capsid to broaden cross-reactivity with antisera is provided.
Collapse
|
8
|
Esmaelizad M, Jelokhani-Niaraki S, Hashemnejad K, Kamalzadeh M, Lotfi M. Molecular characterization of amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87. J Vet Sci 2012; 12:363-71. [PMID: 22122902 PMCID: PMC3232396 DOI: 10.4142/jvs.2011.12.4.363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3Dpol) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3Dpol coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp26→Glu substitution in a beta sheet located within a small groove of the 3Dpol protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.
Collapse
Affiliation(s)
- Majid Esmaelizad
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj 3197619751, Iran.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Yang X, Zhou YS, Wang HN, Zhang Y, Wei K, Wang T. Isolation, identification and complete genome sequence analysis of a strain of foot-and-mouth disease virus serotype Asia1 from pigs in southwest of China. Virol J 2011; 8:175. [PMID: 21496298 PMCID: PMC3094298 DOI: 10.1186/1743-422x-8-175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/16/2011] [Indexed: 12/04/2022] Open
Abstract
Backgroud Foot-and-mouth disease virus (FMDV) serotype Asia1 generally infects cattle and sheep, while its infection of pigs is rarely reported. In 2005-2007, FMD outbreaks caused by Asia1 type occurred in many regions of China, as well as some parts of East Asia countries. During the outbreaks, there was not any report that pigs were found to be clinically infected. Results In this study, a strain of FMDV that isolated from pigs was identified as serotype Asia1, and designated as "Asia1/WHN/CHA/06". To investigate the genomic feature of the strain, complete genome of Asia1/WHN/CHA/06 was sequenced and compared with sequences of other FMDVs by phylogenetic and recombination analysis. The complete genome of Asia1/WHN/CHA/06 was 8161 nucleotides (nt) in length, and was closer to JS/CHA/05 than to all other strains. Potential recombination events associated with Asia1/WHN/CHA/06 were found between JS/CHA/05 and HNK/CHA/05 strains with partial 3B and 3C fragments. Conclusion This is the first report of the isolation and identification of a strain of FMDV type Asia1 from naturally infected pigs. The Asia1/WHN/CHA/06 strain may evolve from the recombination of JS/CHA/05 and HNK/CHA/05 strains.
Collapse
Affiliation(s)
- Xin Yang
- School of Life science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province," 985 Project" Science Innovative Platform for Resource and environment Protection of Southwestern, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, Sichuan, 610064, China
| | | | | | | | | | | |
Collapse
|
11
|
Maree FF, Blignaut B, Aschenbrenner L, Burrage T, Rieder E. Analysis of SAT1 type foot-and-mouth disease virus capsid proteins: Influence of receptor usage on the properties of virus particles. Virus Res 2011; 155:462-72. [DOI: 10.1016/j.virusres.2010.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
12
|
He DS, Li KN, Lin XM, Lin SR, Su DP, Liao M. Genomic comparison of foot-and-mouth disease virus R strain and its chick-passaged attenuated strain. Vet Microbiol 2011; 150:185-90. [PMID: 21330068 DOI: 10.1016/j.vetmic.2011.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 12/23/2010] [Accepted: 01/10/2011] [Indexed: 11/28/2022]
Abstract
The present study examined the genomic differences between foot-and-mouth disease virus (FMDV) R strain and its attenuated, chick-passaged (R(304)) strain. Eleven pairs of primers were used to amplify the complete genome of FMDV R and R(304) by RT-PCR. Each fragment was cloned into pMD18-T vector and sequenced. Nucleotide analyses showed that the genome encoding regions of R and R(304) strains open reading frame (ORF) were both 6966 nucleotides (nt) in length, encoding 2322 amino acids. One hundred and ten nucleotides or 32 amino acids were found to be mutated most frequently were in the 3A gene. The next highest rates of mutation were observed in the LP and 1D genes. No mutations were found in either the 2A or 2C genes. The length of 5'IRES region and 3'UTR were 450 nt and 94 nt, respectively. The 5'IRES region and 3'UTR had only 4 nt and 3 nt mutation, respectively after attenuation. The R(304) poly(A) tail length of 18 nt, while that of the R strain was 30 nt. This result demonstrated the primary genomic changes of a FMDV and its attenuated strain, which has important implications in understanding the molecular epidemiology and functional genomics of FMDV.
Collapse
Affiliation(s)
- Dong-Sheng He
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong Province 510642, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
13
|
Blignaut B, Visser N, Theron J, Rieder E, Maree FF. Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs. J Gen Virol 2010; 92:849-59. [PMID: 21177923 DOI: 10.1099/vir.0.027151-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric foot-and-mouth disease viruses (FMDV) of which the antigenic properties can be readily manipulated is a potentially powerful approach in the control of foot-and-mouth disease (FMD) in sub-Saharan Africa. FMD vaccine application is complicated by the extensive variability of the South African Territories (SAT) type viruses, which exist as distinct genetic and antigenic variants in different geographical regions. A cross-serotype chimeric virus, vKNP/SAT2, was engineered by replacing the external capsid-encoding region (1B-1D/2A) of an infectious cDNA clone of the SAT2 vaccine strain, ZIM/7/83, with that of SAT1 virus KNP/196/91. The vKNP/SAT2 virus exhibited comparable infection kinetics, virion stability and antigenic profiles to the KNP/196/91 parental virus, thus indicating that the functions provided by the capsid can be readily exchanged between serotypes. As these qualities are necessary for vaccine manufacturing, high titres of stable chimeric virus were obtained. Chemically inactivated vaccines, formulated as double-oil-in-water emulsions, were produced from intact 146S virion particles of both the chimeric and parental viruses. Inoculation of guinea pigs with the respective vaccines induced similar antibody responses. In order to show compliance with commercial vaccine requirements, the vaccines were evaluated in a full potency test. Pigs vaccinated with the chimeric vaccine produced neutralizing antibodies and showed protection against homologous FMDV challenge, albeit not to the same extent as for the vaccine prepared from the parental virus. These results provide support that chimeric vaccines containing the external capsid of field isolates can be successfully produced and that they induce protective immune responses in FMD host species.
Collapse
Affiliation(s)
- Belinda Blignaut
- Transboundary Animal Diseases Programme (TADP), Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort 0110, South Africa.
| | | | | | | | | |
Collapse
|
14
|
Maree FF, Blignaut B, de Beer TAP, Visser N, Rieder EA. Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. Virus Res 2010; 153:82-91. [PMID: 20637812 DOI: 10.1016/j.virusres.2010.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease virus (FMDV) infects host cells by adhering to the alpha(V) subgroup of the integrin family of cellular receptors in a Arg-Gly-Asp (RGD) dependent manner. FMD viruses, propagated in non-host cell cultures are reported to acquire the ability to enter cells via alternative cell surface molecules. Sequencing analysis of SAT1 and SAT2 cell culture-adapted variants showed acquisition of positively charged amino acid residues within surface-exposed loops of the outer capsid structural proteins. The fixation of positively charged residues at position 110-112 in the beta F-beta G loop of VP1 of SAT1 isolates is thought to correlate with the acquisition of the ability to utilise alternative glycosaminoglycan (GAG) molecules for cell entry. Similarly, two SAT2 viruses that adapted readily to BHK-21 cells accumulated positively charged residues at positions 83 and 85 of the beta D-beta E loop of VP1. Both regions surround the fivefold axis of the virion. Recombinant viruses containing positively charged residues at position 110 and 112 of VP1 were able to infect CHO-K1 cells (that expresses GAG) and demonstrated increased infectivity in BHK-21 cells. Therefore, recombinant SAT viruses engineered to express substitutions that induce GAG-binding could be exploited in the rational design of vaccine seed stocks with improved growth properties in cell cultures.
Collapse
Affiliation(s)
- Francois F Maree
- Transboundary Animal Diseases Programme, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort 0110, South Africa.
| | | | | | | | | |
Collapse
|
15
|
Bai X, Li P, Cao Y, Li D, Lu Z, Guo J, Sun D, Zheng H, Sun P, Liu X, Luo J, Liu Z. Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain. ACTA ACUST UNITED AC 2009; 52:155-62. [PMID: 19277527 DOI: 10.1007/s11427-009-0007-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Two full-length genomic cDNA clones, pTA/FMDV and pCA/FMDV, were constructed that contained three point-mutants [A174G and A308G (not present in pTA/FMDV); T1029G] in the genome compared with the wild type A/AKT/58 strain of foot-and-mouth disease virus. These two viruses were rescued by co-transfection of pCA/FMDV with pCT7RNAP, which can express T7 RNA polymerase in BHK-21 cell-lines, or by transfection of the in vitro transcribed RNA. Their biological properties were analyzed for their antigenicity, virulence in suckling-mice (LD50) and growth kinetics in BHK-21 cells. The in vivo rescued viruses showed high pathogenicity for 3-day-old unweaned mice (LD50=10(-7.5)). However, the in vitro transcribed RNA derived from pTA/FMDV had lower pathogenicity for suckling-mice (LD50=10(-6)), and the in vivo transcribed RNA recovered from pCA/FMDV co-transfected with pCT7RNAP showed no significant differences from the wild type virus. These data showed that recovery of the infectious foot-and-mouth disease virus directly from the use of in vivo techniques was better than from in vitro methods. Furthermore, the reverse genetic procedure technique was simplified to a faster one-step procedure based on co-transfection with pCT7RNAP. These results suggest that in vivo RNA transcripts may be more valuable for engineering recombinant foot-and-mouth disease virus than in vitro RNA transcripts, and may contribute to further understanding of the biological properties, such as replication, maturation and quasispecies, of the foot-and-mouth disease virus.
Collapse
Affiliation(s)
- XingWen Bai
- Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence. J Virol 2007; 82:2966-74. [PMID: 18160430 DOI: 10.1128/jvi.02060-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type Sindbis virus (SINV) strain MRE16 efficiently infects Aedes aegypti midgut epithelial cells (MEC), but laboratory-derived neurovirulent SINV strain TE/5'2J infects MEC poorly. SINV determinants for MEC infection have been localized to the E2 glycoprotein. The E2 amino acid sequences of MRE16 and TE/5'2J differ at 60 residue sites. To identify the genetic determinants of MEC infection of MRE16, the TE/5'2J virus genome was altered to contain either domain chimeras or more focused nucleotide substitutions of MRE16. The growth patterns of derived viruses in cell culture were determined, as were the midgut infection rates (MIR) in A. aegypti mosquitoes. The results showed that substitutions of MRE16 E2 aa 95 to 96 and 116 to 119 into the TE/5'2J virus increased MIR both independently and in combination with each other. In addition, a unique PPF/.GDS amino acid motif was located between these two sites that was found to be a highly conserved sequence among alphaviruses and flaviviruses but not other arboviruses.
Collapse
|