1
|
Sáiz-Bonilla M, Martín-Merchán A, Pallás V, Navarro JA. A viral protein targets mitochondria and chloroplasts by subverting general import pathways and specific receptors. J Virol 2023; 97:e0112423. [PMID: 37792002 PMCID: PMC10617419 DOI: 10.1128/jvi.01124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Many plant proteins and some proteins from plant pathogens are dually targeted to chloroplasts and mitochondria, and are supposed to be transported along the general pathways for organellar protein import, but this issue has not been explored yet. Moreover, organellar translocon receptors exist as families of several members whose functional specialization in different cargos is supposed but not thoroughly studied. This article provides novel insights into such topics showing for the first time that an exogenous protein, the melon necrotic spot virus coat protein, exploits the common Toc/Tom import systems to enter both mitochondria and chloroplasts while identifying the involved specific receptors.
Collapse
Affiliation(s)
- María Sáiz-Bonilla
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Andrea Martín-Merchán
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Vicente Pallás
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Jose Antonio Navarro
- Laboratory of Plant Molecular Virology, Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Sanfaçon H, Alam SB, Ghoshal B, Ghoshal K, Hui E, Jackson AO, Kakani K, Morris TJ, Nagy PD, Simon AE, Sit TL, Smith TJ, White KA, Xiang Y. D'Ann Rochon (1955-2022), a life of passion for plant virology. Virology 2023; 587:109874. [PMID: 37690385 DOI: 10.1016/j.virol.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
D'Ann Rochon passed away on November 29th 2022. She is remembered for her outstanding contributions to the field of plant virology, her strong commitment to high quality science and her dedication to the training and mentorship of the next generation of scientists. She was a research scientist for Agriculture and Agri-Food Canada and an Adjunct Professor for the University of British Columbia. Her research program provided new insights on the infection cycle of tombusviruses and related viruses, including ground-breaking research on the structure of virus particles, the mechanisms of virus transmission by fungal zoospores, and the complexity of plant-virus interactions. She also developed diagnostic antibodies for plum pox virus and little cherry virus 2 that have had a significant impact on the management of these viruses.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| | - Syed Benazir Alam
- Nanotechnology Research Center, National Research Council Canada, 11421 Saskatchewan Dr NW, T6G 2M9, Edmonton, AB, Canada.
| | - Basudev Ghoshal
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| | - Kankana Ghoshal
- Canadian Food Inspection Agency, Sidney Laboratory, Center for Plant Health, 8801 East Saanich Road, V8L 1H3, Victoria, BC, Canada.
| | - Elizabeth Hui
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | | | - Kishore Kakani
- Enzyme/Protein Engineering, Twist Bioscience, 681 Gateway Blvd., South San Francisco, CA 94080, USA.
| | - T Jack Morris
- School of Biological Sciences, University of Nebraska, Lincoln, USA.
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| | - Tim L Sit
- Department of Entomology and Plant Pathology, NC State University, Campus Box 7616, Raleigh, NC 27695-7616, USA.
| | - Thomas J Smith
- University of Texas Medical Branch at Galveston, Department of Biochemistry and Molecular Biology, 301 University Boulevard, Route 0645, Galveston, TX, 77555, USA.
| | - K Andrew White
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Yu Xiang
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| |
Collapse
|
3
|
Navarro JA, Saiz-Bonilla M, Sanchez-Navarro JA, Pallas V. The mitochondrial and chloroplast dual targeting of a multifunctional plant viral protein modulates chloroplast-to-nucleus communication, RNA silencing suppressor activity, encapsidation, pathogenesis and tissue tropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:197-218. [PMID: 34309112 DOI: 10.1111/tpj.15435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 05/22/2023]
Abstract
Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.
Collapse
Affiliation(s)
- Jose A Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Maria Saiz-Bonilla
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Jesus A Sanchez-Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Vicente Pallas
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| |
Collapse
|
4
|
Cheng DJ, Xu XJ, Yan ZY, Tettey CK, Fang L, Yang GL, Geng C, Tian YP, Li XD. The chloroplast ribosomal protein large subunit 1 interacts with viral polymerase and promotes virus infection. PLANT PHYSIOLOGY 2021; 187:174-186. [PMID: 34618134 PMCID: PMC8418413 DOI: 10.1093/plphys/kiab249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 05/18/2023]
Abstract
Chloroplasts play an indispensable role in the arms race between plant viruses and hosts. Chloroplast proteins are often recruited by plant viruses to support viral replication and movement. However, the mechanism by which chloroplast proteins regulate potyvirus infection remains largely unknown. In this study, we observed that Nicotiana benthamiana ribosomal protein large subunit 1 (NbRPL1), a chloroplast ribosomal protein, localized to the chloroplasts via its N-terminal 61 amino acids (transit peptide), and interacted with tobacco vein banding mosaic virus (TVBMV) nuclear inclusion protein b (NIb), an RNA-dependent RNA polymerase. Upon TVBMV infection, NbRPL1 was recruited into the 6K2-induced viral replication complexes in chloroplasts. Silencing of NbRPL1 expression reduced TVBMV replication. NbRPL1 competed with NbBeclin1 to bind NIb, and reduced the NbBeclin1-mediated degradation of NIb. Therefore, our results suggest that NbRPL1 interacts with NIb in the chloroplasts, reduces NbBeclin1-mediated NIb degradation, and enhances TVBMV infection.
Collapse
Affiliation(s)
- De-Jie Cheng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiao-Jie Xu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Carlos Kwesi Tettey
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Guang-Ling Yang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
5
|
Alam SB, Reade R, Maghodia AB, Ghoshal B, Theilmann J, Rochon D. Targeting of cucumber necrosis virus coat protein to the chloroplast stroma attenuates host defense response. Virology 2021; 554:106-119. [PMID: 33418272 DOI: 10.1016/j.virol.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023]
Abstract
Cucumber necrosis virus (CNV) is a (+)ssRNA virus that elicits spreading local and systemic necrosis in Nicotiana benthamiana. We previously showed that the CNV coat protein (CP) arm functions as a chloroplast transit peptide that targets a CP fragment containing the S and P domains to chloroplasts during infection. Here we show that several CP arm mutants that inefficiently target chloroplasts, along with a mutant that lacks the S and P domains, show an early onset of more localized necrosis along with protracted induction of pathogenesis related protein (PR1a). Agroinfiltrated CNV CP is shown to interfere with CNV p33 and Tomato bushy stunt virus p19 induced necrosis. Additionally, we provide evidence that a CP mutant that does not detectably enter the chloroplast stroma induces relatively higher levels of several plant defense-related genes compared to WT CNV. Together, our data suggest that targeting of CNV CP to the chloroplast stroma interferes with chloroplast-mediated plant defense.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada.
| | - Ron Reade
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Ajay B Maghodia
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Basudev Ghoshal
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| |
Collapse
|
6
|
Christian RW, Hewitt SL, Nelson G, Roalson EH, Dhingra A. Plastid transit peptides-where do they come from and where do they all belong? Multi-genome and pan-genomic assessment of chloroplast transit peptide evolution. PeerJ 2020; 8:e9772. [PMID: 32913678 PMCID: PMC7456531 DOI: 10.7717/peerj.9772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/30/2020] [Indexed: 01/22/2023] Open
Abstract
Subcellular relocalization of proteins determines an organism's metabolic repertoire and thereby its survival in unique evolutionary niches. In plants, the plastid and its various morphotypes import a large and varied number of nuclear-encoded proteins to orchestrate vital biochemical reactions in a spatiotemporal context. Recent comparative genomics analysis and high-throughput shotgun proteomics data indicate that there are a large number of plastid-targeted proteins that are either semi-conserved or non-conserved across different lineages. This implies that homologs are differentially targeted across different species, which is feasible only if proteins have gained or lost plastid targeting peptides during evolution. In this study, a broad, multi-genome analysis of 15 phylogenetically diverse genera and in-depth analyses of pangenomes from Arabidopsis and Brachypodium were performed to address the question of how proteins acquire or lose plastid targeting peptides. The analysis revealed that random insertions or deletions were the dominant mechanism by which novel transit peptides are gained by proteins. While gene duplication was not a strict requirement for the acquisition of novel subcellular targeting, 40% of novel plastid-targeted genes were found to be most closely related to a sequence within the same genome, and of these, 30.5% resulted from alternative transcription or translation initiation sites. Interestingly, analysis of the distribution of amino acids in the transit peptides of known and predicted chloroplast-targeted proteins revealed monocot and eudicot-specific preferences in residue distribution.
Collapse
Affiliation(s)
- Ryan W. Christian
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Seanna L. Hewitt
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Grant Nelson
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
| | - Eric H. Roalson
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, WA, USA
- Department of Horticulture, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Serra‐Soriano M, Antonio Navarro J, Pallás V. Dissecting the multifunctional role of the N-terminal domain of the Melon necrotic spot virus coat protein in RNA packaging, viral movement and interference with antiviral plant defence. MOLECULAR PLANT PATHOLOGY 2017; 18:837-849. [PMID: 27301648 PMCID: PMC6638237 DOI: 10.1111/mpp.12448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
The coat protein (CP) of Melon necrotic spot virus (MNSV) is structurally composed of three major domains. The middle S-domain builds a robust protein shell around the viral genome, whereas the C-terminal protruding domain, or P-domain, is involved in the attachment of virions to the transmission vector. Here, we have shown that the N-terminal domain, or R-domain, and the arm region, which connects the R-domain and S-domain, are involved in different key steps of the viral cycle, such as cell-to-cell movement and the suppression of RNA silencing and pathogenesis through their RNA-binding capabilities. Deletion mutants revealed that the CP RNA-binding ability was abolished only after complete, but not partial, deletion of the R-domain and the arm region. However, a comparison of the apparent dissociation constants for the CP RNA-binding reaction of several partial deletion mutants showed that the arm region played a more relevant role than the R-domain in in vitro RNA binding. Similar results were obtained in in vivo assays, although, in this case, full-length CPs were required to encapsidate full-length genomes. We also found that the R-domain carboxyl portion and the arm region were essential for efficient cell-to-cell movement, for enhancement of Potato virus X pathogenicity, for suppression of systemic RNA silencing and for binding of small RNAs. Therefore, unlike other carmovirus CPs, the R-domain and the arm region of MNSV CP have acquired, in addition to other essential functions such as genome binding and encapsidation functions, the ability to suppress RNA silencing by preventing systemic small RNA transport.
Collapse
Affiliation(s)
- Marta Serra‐Soriano
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| | - José Antonio Navarro
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| | - Vicente Pallás
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| |
Collapse
|
8
|
Alam SB, Rochon D. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection. J Virol 2015; 90:3302-17. [PMID: 26719261 PMCID: PMC4794660 DOI: 10.1128/jvi.02833-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold. We show that HSP70 family protein homologs are co-opted by CNV at several stages of infection. We have found that overexpression of Hsp70 or Hsc70 leads to enhanced CNV genomic RNA, coat protein (CP), and virion accumulation, whereas downregulation leads to a corresponding decrease. Hsc70-2 was found to increase solubility of CNV CP in vitro and to increase accumulation of CNV CP independently of viral RNA replication during coagroinfiltration in N. benthamiana. In addition, virus particle assembly into virus-like particles in CP agroinfiltrated plants was increased in the presence of Hsc70-2. HSP70 was found to increase the targeting of CNV CP to chloroplasts during infection, reinforcing the role of HSP70 in chloroplast targeting of host proteins. Hence, our findings have led to the discovery of a highly induced host factor that has been co-opted to play multiple roles during several stages of the CNV infection cycle. IMPORTANCE Because of the small size of its RNA genome, CNV is dependent on interaction with host cellular components to successfully complete its multiplication cycle. We have found that CNV induces HSP70 family homologs to a high level during infection, possibly as a result of the host response to the high levels of CNV proteins that accumulate during infection. Moreover, we have found that CNV co-opts HSP70 family homologs to facilitate several aspects of the infection process such as viral RNA, coat protein and virus accumulation. Chloroplast targeting of the CNV CP is also facilitated, which may aid in CNV suppression of host defense responses. Several viruses have been shown to induce HSP70 during infection and others to utilize HSP70 for specific aspects of infection such as replication, assembly, and disassembly. We speculate that HSP70 may play multiple roles in the infection processes of many viruses.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| |
Collapse
|
9
|
Chkuaseli T, Newburn LR, Bakhshinyan D, White KA. Protein expression strategies in Tobacco necrosis virus-D. Virology 2015; 486:54-62. [PMID: 26402375 DOI: 10.1016/j.virol.2015.08.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 02/04/2023]
Abstract
Tobacco necrosis virus (TNV-D) has a plus-strand RNA genome that is neither 5' capped nor 3' poly-adenylated. Instead, it utilizes a 3' cap-independent translational enhancer (3'CITE) located in its 3' untranslated region (UTR) for translation of its proteins. We have examined the protein expression strategies used by TNV-D and our results indicate that: (i) a base pairing interaction between conserved ACCA and UGGU motifs in the genomic 5'UTR and 3'CITE, respectively, is not required for efficient plant cell infection, (ii) similar potential 5'UTR-3'CITE interactions in the two viral subgenomic mRNAs are not needed for efficient translation of viral proteins in vitro, (iii) a small amount of capsid protein is translated from the viral genome by a largely 3'CITE-independent mechanism, (iv) the larger of two possible forms of capsid protein is efficiently translated, and (v) p7b is translated from subgenomic mRNA1 by a leaky scanning mechanism.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Laura R Newburn
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - David Bakhshinyan
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
10
|
Encapsidation of Host RNAs by Cucumber Necrosis Virus Coat Protein during both Agroinfiltration and Infection. J Virol 2015; 89:10748-61. [PMID: 26269190 DOI: 10.1128/jvi.01466-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Next-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs. The most predominant host RNA species encapsidated in VLPs were chloroplast encoded, consistent with the efficient targeting of CNV CP to chloroplasts during agroinfiltration. Interestingly, droplet digital PCR analysis showed that the CNV CP mRNA expressed during agroinfiltration was the most efficiently encapsidated mRNA, suggesting that the CNV CP open reading frame may contain a high-affinity site or sites for CP binding and thus contribute to the specificity of CNV RNA encapsidation. Approximately 0.09% to 0.7% of the RNA derived from authentic CNV virions contained host RNA, with chloroplast RNA again being the most prominent species. This is consistent with our previous finding that a small proportion of CNV CP enters chloroplasts during the infection process and highlights the possibility that chloroplast targeting is a significant aspect of CNV infection. Remarkably, 6 to 8 of the top 10 most efficiently encapsidated nucleus-encoded RNAs in CNV virions correspond to retrotransposon or retrotransposon-like RNA sequences. Thus, CNV could potentially serve as a vehicle for horizontal transmission of retrotransposons to new hosts and thereby significantly influence genome evolution. IMPORTANCE Viruses predominantly encapsidate their own virus-related RNA species due to the possession of specific sequences and/or structures on viral RNA which serve as high-affinity binding sites for the coat protein. In this study, we show, using next-generation sequence analysis, that CNV also encapsidates host RNA species, which account for ∼0.1% of the RNA packaged in CNV particles. The encapsidated host RNAs predominantly include chloroplast RNAs, reinforcing previous observations that CNV CP enters chloroplasts during infection. Remarkably, the most abundantly encapsidated cytoplasmic mRNAs consisted of retrotransposon-like RNA sequences, similar to findings recently reported for flock house virus (A. Routh, T. Domitrovic, and J. E. Johnson, Proc Natl Acad Sci U S A 109:1907-1912, 2012). Encapsidation of retrotransposon sequences may contribute to their horizontal transmission should CNV virions carrying retrotransposons infect a new host. Such an event could lead to large-scale genomic changes in a naive plant host, thus facilitating host evolutionary novelty.
Collapse
|
11
|
Rochon D, Singh B, Reade R, Theilmann J, Ghoshal K, Alam SB, Maghodia A. The p33 auxiliary replicase protein of Cucumber necrosis virus targets peroxisomes and infection induces de novo peroxisome formation from the endoplasmic reticulum. Virology 2014; 452-453:133-42. [PMID: 24606690 DOI: 10.1016/j.virol.2013.12.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022]
Abstract
Tombusviruses replicate on pre-existing organelles such as peroxisomes or mitochondria, the membranes of which become extensively reorganized into multivesicular bodies (MVBs) during the infection process. Cucumber necrosis virus (CNV) has previously been shown to replicate in association with peroxisomes in yeast. We show that CNV induces MVBs from peroxisomes in infected plants and that GFP-tagged p33 auxiliary replicase protein colocalizes with YFP(SKL), a peroxisomal marker. Most remarkably, the ER of CNV infected Nicotiana benthamiana 16C plants undergoes a dramatic reorganization producing numerous new peroxisome-like structures that associate with CNV p33, thus likely serving as a new site for viral RNA replication. We also show that plants agroinfiltrated with p33 develop CNV-like necrotic symptoms which are associated with increased levels of peroxide. Since peroxisomes are a site for peroxide catabolism, and peroxide is known to induce plant defense responses, we suggest that dysfunctional peroxisomes contribute to CNV induced necrosis.
Collapse
Affiliation(s)
- D'Ann Rochon
- Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0; University of British Columbia Faculty of Land and Food Systems Vancouver, BC, Canada V6T 1Z4.
| | - Bhavana Singh
- University of British Columbia Faculty of Land and Food Systems Vancouver, BC, Canada V6T 1Z4
| | - Ron Reade
- Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0
| | - Jane Theilmann
- Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0
| | - Kankana Ghoshal
- University of British Columbia Faculty of Land and Food Systems Vancouver, BC, Canada V6T 1Z4
| | - Syed Benazir Alam
- University of British Columbia Faculty of Land and Food Systems Vancouver, BC, Canada V6T 1Z4
| | - Ajay Maghodia
- Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0; University of British Columbia Faculty of Land and Food Systems Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
12
|
Shamekova M, Mendoza MR, Hsieh YC, Lindbo J, Omarov RT, Scholthof HB. Tombusvirus-based vector systems to permit over-expression of genes or that serve as sensors of antiviral RNA silencing in plants. Virology 2014; 452-453:159-65. [PMID: 24606693 DOI: 10.1016/j.virol.2013.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/19/2013] [Accepted: 12/23/2013] [Indexed: 01/16/2023]
Abstract
A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing.
Collapse
Affiliation(s)
- Malika Shamekova
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Maria R Mendoza
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Yi-Cheng Hsieh
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - John Lindbo
- Department of Plant Pathology, Ohio State University, Wooster, OH 44691, USA
| | - Rustem T Omarov
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:253-9. [PMID: 22683762 DOI: 10.1016/j.bbamcr.2012.05.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/26/2012] [Accepted: 05/28/2012] [Indexed: 01/08/2023]
Abstract
Over 100 proteins are found in both mitochondria and chloroplasts, via a variety of processes known generally as 'dual-targeting'. Dual-targeting has attracted interest from many different research groups because of its profound implications concerning the mechanisms of protein import into these organelles and the evolution of both the protein import machinery and the targeting sequences within the imported proteins. Beyond these aspects, dual-targeting is also interesting for its implications concerning shared functions between mitochondria and chloroplasts, and especially the control of the activities of these two very different energy organelles. We discuss each of these points in the light of the latest relevant research findings and make some suggestions for where research might be most illuminating in the near future. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|