1
|
Mohamed G, Ji A, Cao X, Islam MS, Hassan MF, Zhao Y, Lan X, Dong W, Wu H, Xu W. A small antimicrobial peptide derived from a Burkholderia bacterium exhibits a broad-spectrum and high inhibiting activities against crop diseases. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:430-441. [PMID: 39539019 PMCID: PMC11772312 DOI: 10.1111/pbi.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Crop diseases cause significant quality and yield losses to global crop products each year and are heavily controlled by chemicals along with very limited antibiotics composed of small molecules. However, these methods often result in environmental pollution and pest resistance, necessitating the development of new bio-controlling products to mitigate these hazards. To identify effective antimicrobial peptides (AMPs) considered as potential sources of future antibiotics, AMPs were screened from five bacterial strains showing antagonism against a representative phytopathogenic fungus (Rhizoctonia Solani) through the Bacillus subtilis expression system, which has been developed for identifying bacterial AMPs by displaying autolysis morphologies. A total of 5000 colonies were screened, and five displaying autolysis morphologies showed antagonism against R. solani. A novel AMP with the strongest antagonism efficiency was determined and tentatively named HR2-7, which is composed of 24 amino acids with an alpha-helical structure. HR2-7 has strong and broad-spectrum antimicrobial activity, tested against 10 g-positive and -negative bacteria and four phytopathogenic fungi by contact culture in plates with minimal lethal concentrations of 4.0 μM. When applied as purified peptide or in fermented B. subtilis culture solution, HR2-7 showed strong controlling efficiency on plants against diverse fungal and bacterial pathogens. Based on current understanding, HR2-7 is recognized as the first AMP derived from an agricultural antagonistic bacterium. It exhibits wide-ranging and notable antimicrobial efficacy, offering a supplementary approach for managing plant diseases, in addition to conventional chemical pesticides and antibiotics.
Collapse
Affiliation(s)
- Gamarelanbia Mohamed
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Ao Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Xinyu Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Md. Samiul Islam
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Mohamed F. Hassan
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
- Department of Agriculture BotanyFaculty of AgricultureAl‐Azhar UniversityCairo 11651Egypt
| | - Yang Zhao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Xing Lan
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Wubei Dong
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| | - Hongqu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Biopesticide Engineering Research CentreHubei Academy of Agricultural SciencesWuhanChina
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Lab of Plant Pathology of Hubei ProvinceWuhanChina
| |
Collapse
|
2
|
Han Z, Jiang J, Xu W. Novel polymycoviruses are encapsidated in filamentous virions. J Virol 2025; 99:e0151524. [PMID: 39655956 PMCID: PMC11784019 DOI: 10.1128/jvi.01515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 02/01/2025] Open
Abstract
Polymycoviridae is a relatively new viral family that was established nearly 5 years ago, but their viral morphologies (naked or encapsidated) remain controversial since only one member namely, Colletotrichum camelliae filamentous virus 1 (CcFV1), was identified as being encapsidated in filamentous virions. Here, three novel double-stranded RNA (dsRNA) viruses belonging to the family Polymycoviridae were identified in three phytopathogenic fungal strains and tentatively named Pseudopestalotiopsis camelliae-sinensis polymycovirus 1 (PcsPmV1), and Phyllosticta capitalensis polymycovirus 1 and 2 (PhcPmV1 and 2), respectively. PcsPmV1 and PhcPmVs have five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, encoding five or seven putative open reading frames (ORFs), of which ORF1 encodes an RNA-dependent RNA polymerase, ORF5 encodes a prolein-alanine-serine-rich (P-A-S-rich) protein behaving as coat protein (CP); and dsRNAs 4 and 6 encode putative proteins with unknown functions and share no detectable identities with known viral sequences. Upon examination under transmission electron microscopy after purification from fungal mycelia, PcsPmV1 and PhcPmVs were found to be encapsidated in filamentous particles, as was a known polymycovirus, Botryosphaeria dothidea RNA virus 1 (BdRV1), which was previously assumed to likely have no conventional virions. The morphology of PcsPmV1 was further supported by the observation that its particles could be decorated by polyclonal antibodies against its CP and bound by immuno-gold particles conjugated to the specific CP antibody. Together with CcFV1, BdRV1, PcsPmV1, and PhcPmVs, these provide strong evidence to support the notion that polymycoviruses are encapsidated in filamentous virions constituted by P-A-S-rich CPs. Moreover, their biological effects on their fungal hosts were assessed, suggesting that PcsPmV1 infection could enhance growth and virulence.IMPORTANCEPolymycoviridae, a recently established viral family, has raised questions about encapsidation. Here, we identify and characterize three novel polymycoviral double-stranded RNA (dsRNA) viruses in phytopathogenic fungal strains, tentatively named Pseudopestalotiopsis camelliae-sinensis polymycovirus 1, and Phyllosticta capitalensis polymycovirus 1 and 2, respectively. These polymycoviruses possess five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, with two encoding putative proteins of unknown functions and sharing no detectable identities with known viral sequences. Their morphologies indicate filamentous virions constituted by proline-alanine-serine-rich coat proteins, observed using immunosorbent electron microscopy combined with immune-gold labeling techniques. Additionally, Botryosphaeria dothidea RNA virus 1, previously assumed to lack conventional virions, is also shown to be encapsidated in filamentous particles. This study provides new evidence supporting the encapsidation of polymycoviruses into elongated and flexuous virions, significantly contributing to our understanding of the evolutionary particle architecture within the virosphere and expanding our knowledge of viral diversity and evolution. Moreover, this is the first report of a polymycovirus enhancing the virulence and growth of a phytopathogenic fungus.
Collapse
Affiliation(s)
- Zhenhao Han
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jingjing Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
3
|
Zhou Q, Yao Z, Cao X, Chen Y, Zou C, Chen B. Fusarium sacchari hypovirus 1, a Member of Hypoviridae with Virulence Attenuation Capacity in Phytopathogenic Fusarium Species. Viruses 2024; 16:608. [PMID: 38675949 PMCID: PMC11054305 DOI: 10.3390/v16040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In a survey of mycoviruses in Fusarium species that cause sugarcane Pokkah boeng disease, twelve Fusarium strains from three Fusarium species (F. sacchari, F. andiyazi, and F. solani) were found to contain Fusarium sacchari hypovirus 1 (FsHV1), which we reported previously. The genomes of these variants range from 13,966 to 13,983 nucleotides, with 98.6% to 99.9% nucleotide sequence identity and 98.70% to 99.9% protein sequence similarity. Phylogenetic analysis placed these FsHV1 variants within the Alphahypovirus cluster of Hypoviridae. Intriguingly, no clear correlation was found between the geographic origin and host specificity of these viral variants. Additionally, six out of the twelve variants displayed segmental deletions of 1.5 to 1.8 kilobases, suggesting the existence of defective viral dsRNA. The presence of defective viral dsRNA led to a two-thirds reduction in the dsRNA of the wild-type viral genome, yet a tenfold increase in the total viral dsRNA content. To standardize virulence across natural strains, all FsHV1 strains were transferred into a single, virus-free Fusarium recipient strain, FZ06-VF, via mycelial fusion. Strains of Fusarium carrying FsHV1 exhibited suppressed pigment synthesis, diminished microspore production, and a marked decrease in virulence. Inoculation tests revealed varying capacities among different FsHV1 variants to modulate fungal virulence, with the strain harboring the FsHV1-FSA1 showing the lowest virulence, with a disease severity index (DSI) of 3.33, and the FsHV1-FS1 the highest (DSI = 17.66). The identification of highly virulent FsHV1 variants holds promise for the development of biocontrol agents for Pokkah boeng management.
Collapse
Affiliation(s)
- Qiujuan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ziting Yao
- Plant Protection Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007, China
| | - Xueying Cao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuejia Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Ministry and Province Co-Sponsored Center of Collaborative Innovation for Sugarcane Industry, College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Wen Y, Qu J, Zhang H, Yang Y, Huang R, Deng J, Zhang J, Xiao Y, Li J, Zhang M, Wang G, Zhai L. Identification and Characterization of a Novel Hypovirus from the Phytopathogenic Fungus Botryosphaeria dothidea. Viruses 2023; 15:2059. [PMID: 37896836 PMCID: PMC10611357 DOI: 10.3390/v15102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Many mycoviruses have been accurately and successfully identified in plant pathogenic fungus Botryosphaeria dothidea. This study discovered three mycoviruses from a B. dothidea strain SXD111 using high-throughput sequencing technology. A novel hypovirus was tentatively named Botryosphaeria dothidea hypovirus 1 (BdHV1/SXD111). The other two were known viruses, which we named Botryosphaeria dothidea polymycovirus 1 strain SXD111 (BdPmV1/SXD111) and Botryosphaeria dothidea partitivirus 1 strain SXD111 (BdPV1/SXD111). The genome of BdHV1/SXD111 is 11,128 nucleotides long, excluding the poly (A) tail. A papain-like cysteine protease (Pro), a UDP-glucose/sterol glucosyltransferase (UGT), an RNA-dependent RNA polyprotein (RdRp), and a helicase (Hel) were detected in the polyprotein of BdHV1/SXD111. Phylogenetic analysis showed that BdHV1/SXD111 was clustered with betahypovirus and separated from members of the other genera in the family Hypoviridae. The BdPmV1/SXD111 genome comprised five dsRNA segments with 2396, 2232, 1967, 1131, and 1060 bp lengths. Additionally, BdPV1/SXD111 harbored three dsRNA segments with 1823, 1623, and 557 bp lengths. Furthermore, the smallest dsRNA was a novel satellite component of BdPV1/SXD111. BdHV1/SXD111 could be transmitted through conidia and hyphae contact, whereas it likely has no apparent impact on the morphologies and virulence of the host fungus. Thus, this study is the first report of a betahypovirus isolated from the fungus B. dothidea. Importantly, our results significantly enhance the diversity of the B. dothidea viruses.
Collapse
Affiliation(s)
- Yongqi Wen
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jinyue Qu
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Honglin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yi Yang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Rui Huang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jili Deng
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiayu Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Yanping Xiao
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Jiali Li
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Meixin Zhang
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Lifeng Zhai
- College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China; (Y.W.); (J.Q.); (H.Z.); (Y.Y.); (R.H.); (J.D.); (J.Z.); (Y.X.); (J.L.); (M.Z.)
| |
Collapse
|
5
|
Yin H, Tian M, Peng Y, Qin N, Lü H, Ren L, Zhao X. First Report on Choanephora cucurbitarum Causing Choanephora Rot in Chenopodium Plants and Its Sensitivity to Fungicide. J Fungi (Basel) 2023; 9:881. [PMID: 37754989 PMCID: PMC10532463 DOI: 10.3390/jof9090881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Choanephora rot of Chenopodium plants (CRC) was observed at the flowering stages in seven plantations of Shanxi Province, China. CRC had caused leaf, stem, and panicle neck rot of C. quinoa, panicle neck and stem rot of C. formosanum, and stem rot of C. album. Typical symptoms included water-soaked, rapid soft rotting, and abundant sporulation on the whole panicle necks, stems, and leaves. Based on morphological characteristics, phylogenetic analyses, and pathogenicity tests, the pathogens were identified as Choanephoraceae cucurbitarum. Sporangiola and sporangiospore of C. cucurbitarum germinated at 30 °C and were able to germinate by two h post-inoculation (hpi). The germination rates of sporangiola and sporangiospore significantly increased at 3 to 4 hpi, and the germination rates ranged from 91.53 to 97.67%. The temperature had a significant effect on the pathogenicity of C. cucurbitarum the optimum pathogenic temperatures for stems of C. quinoa, C. formosanum and C. album were 30 °C after one day post-inoculation. Choanephoraceae cucurbitarum could infect white and red quinoa panicle necks between 20 and 30 °C, and the average lesion lengths were 0.21 to 3.62 cm. Among the five tested fungicides (boscalid, dimethomorph, isopyrazam, propiconazole, and tebuconazole), isopyrazam showed higher sensitivity to sporangiola germination of C. cucurbitarum, with an EC50 value of 0.6550 μg/mL. Isopyrazam and tebuconazole strongly inhibited the sporangiospore germination of C. cucurbitarum, which showed EC50 values of 0.4406 and 0.3857 μg/mL. To our knowledge, the present study found for the first time that C. cucurbitarum is a pathogen causing panicle neck of C. formosanum and stem rot of C. formosanum and C. album, while CRC first appeared in the quinoa panicle necks, and gradually expanded to stems and leaves.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaojun Zhao
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
6
|
Han Z, Liu J, Kong L, He Y, Wu H, Xu W. A special satellite-like RNA of a novel hypovirus from Pestalotiopsis fici broadens the definition of fungal satellite. PLoS Pathog 2023; 19:e1010889. [PMID: 37285391 DOI: 10.1371/journal.ppat.1010889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Satellites associated with plant or animal viruses have been largely detected and characterized, while those from mycoviruses together with their roles remain far less determined. Three dsRNA segments (dsRNA 1 to 3 termed according to their decreasing sizes) were identified in a strain of phytopathogenic fungus Pestalotiopsis fici AH1-1 isolated from a tea leaf. The complete sequences of dsRNAs 1 to 3, with the sizes of 10316, 5511, and 631 bp, were determined by random cloning together with a RACE protocol. Sequence analyses support that dsRNA1 is a genome of a novel hypovirus belonging to genus Alphahypovirus of the family Hypoviridae, tentatively named Pestalotiopsis fici hypovirus 1 (PfHV1); dsRNA2 is a defective RNA (D-RNA) generating from dsRNA1 with septal deletions; and dsRNA3 is the satellite component of PfHV1 since it could be co-precipitated with other dsRNA components in the same sucrose fraction by ultra-centrifuge, suggesting that it is encapsulated together with PfHV1 genomic dsRNAs. Moreover, dsRNA3 shares an identical stretch (170 bp) with dsRNAs 1 and 2 at their 5' termini and the remaining are heterogenous, which is distinct from a typical satellite that generally has very little or no sequence similarity with helper viruses. More importantly, dsRNA3 lacks a substantial open reading frame (ORF) and a poly (A) tail, which is unlike the known satellite RNAs of hypoviruses, as well as unlike those in association with Totiviridae and Partitiviridae since the latters are encapsidated in coat proteins. As up-regulated expression of RNA3, dsRNA1 was significantly down-regulated, suggesting that dsRNA3 negatively regulates the expression of dsRNA1, whereas dsRNAs 1 to 3 have no obvious impact on the biological traits of the host fungus including morphologies and virulence. This study indicates that PfHV1 dsRNA3 is a special type of satellite-like nucleic acid that has substantial sequence homology with the host viral genome without encapsidation in a coat protein, which broadens the definition of fungal satellite.
Collapse
Affiliation(s)
- Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jiwen Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Linghong Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yunqiang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Hongqu Wu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs; Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
7
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
8
|
Diversity of Mycoviruses Present in Strains of Binucleate Rhizoctonia and Multinucleate Rhizoctonia, Causal Agents for Potato Stem Canker or Black Scurf. J Fungi (Basel) 2023; 9:jof9020214. [PMID: 36836328 PMCID: PMC9967303 DOI: 10.3390/jof9020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, the diversity of putative mycoviruses present in 66 strains of binucleate Rhizoctonia (BNR, including anastomosis group (AG)-A, AG-Fa, AG-K, and AG-W) and 192 strains of multinucleate Rhizoctonia (MNR, including AG-1-IA, AG-2-1, AG-3 PT, AG-4HGI, AG-4HGII, AG-4HGIII, and AG-5), which are the causal agents of potato stem canker or black scurf, was studied using metatranscriptome sequencing. The number of contigs related to mycoviruses identified from BNR and MNR was 173 and 485, respectively. On average, each strain of BNR accommodated 2.62 putative mycoviruses, while each strain of MNR accommodated 2.53 putative mycoviruses. Putative mycoviruses detected in both BNR and MNR contained positive single-stranded RNA (+ssRNA), double-stranded RNA (dsRNA), and negative single-stranded RNA (-ssRNA) genomes, with +ssRNA genome being the prevalent nucleic acid type (82.08% in BNR and 75.46% in MNR). Except for 3 unclassified, 170 putative mycoviruses found in BNR belonged to 13 families; excluding 33 unclassified, 452 putative mycoviruses found in MNR belonged to 19 families. Through genome organization, multiple alignments, and phylogenetic analyses, 4 new parititviruses, 39 novel mitoviruses, and 4 new hypoviruses with nearly whole genome were detected in the 258 strains of BNR and MNR.
Collapse
|
9
|
Zhang X, Wu C, Hua H, Cai Q, Wu X. Characterization of the First Alternavirus Identified in Fusarium avenaceum, the Causal Agent of Potato Dry Rot. Viruses 2023; 15:145. [PMID: 36680185 PMCID: PMC9864086 DOI: 10.3390/v15010145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
A novel virus with a double-stranded RNA (dsRNA) genome was isolated from Fusarium avenaceum strain GS-WW-224, the causal agent of potato dry rot. The virus has been designated as Fusarium avenaceum alternavirus 1 (FaAV1). Its genome consists of two dsRNA segments, 3538 bp (dsRNA1) and 2477 bp (dsRNA2) in length, encoding RNA-dependent RNA polymerase (RdRp) and a hypothetical protein (HP), respectively. The virions of FaAV1 are isometric spherical and approximately 30 nm in diameter. Multiple sequence alignments and phylogenetic analyses based on the amino acid sequences of RdRp and HP indicated that FaAV1 appears to be a new member of the proposed family Alternaviridae. No significant differences in colony morphology and spore production were observed between strains GS-WW-224 and GS-WW-224-VF, the latter strain being one in which FaAV1 was eliminated from strain GS-WW-224. Notably, however, the dry weight of mycelial biomass of GS-WW-224 was higher than that of mycelial biomass of GS-WW-224-VF. The depth and the width of lesions on potato tubers caused by GS-WW-224 were significantly greater, relative to GS-WW-224-VF, suggesting that FaAV1 confers hypervirulence to its host, F. avenaceum. Moreover, FaAV1 was successfully transmitted horizontally from GS-WW-224 to ten other species of Fusarium, and purified virions of FaAV1 were capable of transfecting wounded hyphae of the ten species of Fusarium. This is the first report of an alternavirus infecting F. avenaceum and conferring hypervirulence.
Collapse
Affiliation(s)
| | | | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China
| |
Collapse
|
10
|
Dong K, Xu C, Kotta‐Loizou I, Jiang J, Lv R, Kong L, Li S, Hong N, Wang G, Coutts RHA, Xu W. Novel Viroid-Like RNAs Naturally Infect a Filamentous Fungus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204308. [PMID: 36515275 PMCID: PMC9875651 DOI: 10.1002/advs.202204308] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
To date, viroids have been found to naturally infect only plants, resulting in substantial losses for some crops. Whether viroids or viroid-like RNAs naturally infect non-plant hosts remains unknown. Here the existence of a set of exogenous, single-stranded circular RNAs, ranging in size from 157 to 450 nucleotides, isolated from the fungus Botryosphaeria dothidea and nominated B. dothidea RNAs (BdcRNAs) is reported. BdcRNAs replicate autonomously in the nucleus via a rolling-circle mechanism following a symmetric pathway. BdcRNA infection induces symptoms, because BdcRNAs can apparently modulate, to different degrees, specific biological traits (e.g., alter morphology, decrease growth rate, attenuate virulence, and increase or decrease tolerance to osmotic and oxidative stress) of the host fungus. Overall, BdcRNAs have genome characteristics similar to those of viroids and exhibit pathogenic effects on fungal hosts. It is proposed that these novel fungus infecting RNAs should be termed mycoviroids. BdcRNA(s) may be considered additional inhabitants at the frontier of life in terms of genomic complexity, and represent a new class of acellular entities endowed with regulatory functions, and novel epigenomic carriers of biological information.
Collapse
Affiliation(s)
- Kaili Dong
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuan Xu
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ioly Kotta‐Loizou
- Department of Life SciencesFaculty of Natural SciencesImperial College LondonLondonSW7 2AZUK
- Department of ClinicalPharmaceutical and Biological ScienceSchool of Life and Medical SciencesUniversity of HertfordshireHatfieldAL10 9ABUK
| | - Jingjing Jiang
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ruiying Lv
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Linghong Kong
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shifang Li
- Environment and Plant Protection InstituteChinese Academy of Tropical Agricultural SciencesXueyuan Road, Longhua DistrictHaikouHainan571101P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Ni Hong
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guoping Wang
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Robert H. A. Coutts
- Department of ClinicalPharmaceutical and Biological ScienceSchool of Life and Medical SciencesUniversity of HertfordshireHatfieldAL10 9ABUK
| | - Wenxing Xu
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
11
|
Molecular characterization of a novel endornavirus isolated from Ophiostoma bicolor associated with bark beetles. Arch Virol 2022; 167:2839-2843. [PMID: 36227426 DOI: 10.1007/s00705-022-05613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
Ophiostoma bicolor is a pathogenic fungus associated with bark beetles that can cause serious damage to host plants. In this study, a novel fungal virus, "Ophiostoma bicolor endornavirus 1" (ObEV1), was obtained from O. bicolor, and its complete genome sequence was determined. ObEV1 has a single-stranded positive-sense (+ ss) RNA genome of 10,119 nucleotides. Sequence annotation and comparison showed that the viral genome has a single large open reading frame (ORF) encoding a polyprotein of 362.48 kDa. The polyprotein contains seven conserved domains: RNA-dependent RNA polymerase (RdRp), viral RNA helicase 1 (VHel1), viral methyltransferase (VMet), DEAD-like helicase (DEXDc), gliding-GltJ (G1), large tegument protein UL36 (PHA), and YlqF-related-GTPase (Y). Sequence comparisons and phylogenetic analysis showed that ObEV1 is a novel mycovirus belonging to the genus Betaendornavirus of the family Endornaviridae. This is the first report of a mycovirus in the ophiostomatoid fungus O. bicolor.
Collapse
|
12
|
Zhong J, Li P, Gao BD, Zhong SY, Li XG, Hu Z, Zhu JZ. Novel and diverse mycoviruses co-infecting a single strain of the phytopathogenic fungus Alternaria dianthicola. Front Cell Infect Microbiol 2022; 12:980970. [PMID: 36237429 PMCID: PMC9552818 DOI: 10.3389/fcimb.2022.980970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dianthicola is a pathogenic fungus that causes serious leaf or flower blight on some medicinal plants worldwide. In this study, multiple dsRNA bands in the range of 1.2-10 kbp were found in a Alternaria dianthus strain HNSZ-1, and eleven full-length cDNA sequences of these dsRNA were obtained by high-throughput sequencing, RT-PCR detection and conventional Sanger sequencing. Homology search and phylogenetic analyses indicated that the strain HNSZ-1 was infected by at least nine mycoviruses. Among the nine, five viruses were confirmed to represent novel viruses in the families Hypoviridae, Totiviridae, Mymonaviridae and a provisional family Ambiguiviridae. Virus elimination and horizontal transmission indicated that the (-) ssRNA virus, AdNSRV1, might be associated with the slow growth and irregular colony phenotype of the host fungus. As far as we know, this is the first report for virome characterization of A. dianthus, which might provide important insights for screening of mycovirus for biological control and for studying of the interactions between viruses or viruses and their host.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Shuang Yu Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Xiao Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Zhao Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Jun Zi Zhu
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| |
Collapse
|
13
|
Wang R, Liu C, Jiang X, Tan Z, Li H, Xu S, Zhang S, Shang Q, Deising HB, Behrens SE, Wu B. The Newly Identified Trichoderma harzianum Partitivirus (ThPV2) Does Not Diminish Spore Production and Biocontrol Activity of Its Host. Viruses 2022; 14:1532. [PMID: 35891512 PMCID: PMC9317543 DOI: 10.3390/v14071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
A new partititvirus isolated from a Trichoderma harzianum strain (T673), collected in China, was characterized and annotated as Trichoderma harzianum partitivirus 2 (ThPV2). The genome of ThPV2 consists of a 1693 bp dsRNA1 encoding a putative RNA-dependent RNA polymerase (RdRp) and a 1458 bp dsRNA2 encoding a hypothetical protein. In comparative studies employing the ThPV2-infected strain (T673) and a strain cured by ribavirin treatment (virus-free strain T673-F), we investigated biological effects of ThPV2 infection. While the growth rate of the virus-infected fungus differed little from that of the cured variant, higher mycelial density, conidiospore, and chlamydospore production were observed in the virus-infected strain T673. Furthermore, both the ThPV2-infected and the cured strain showed growth- and development-promoting activities in cucumber plants. In vitro confrontation tests showed that strains T673 and T673-F inhibited several important fungal pathogens and an oomycete pathogen in a comparable manner. Interestingly, in experiments with cucumber seeds inoculated with Fusarium oxysporum f. sp. cucumerinum, the ThPV2-infected strain T673 showed moderately but statistically significantly improved biocontrol activity when compared with strain T673-F. Our data broaden the spectrum of known mycoviruses and provide relevant information for the development of mycoviruses for agronomic applications.
Collapse
Affiliation(s)
- Rongqun Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Zhaoyan Tan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Hongrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shujin Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuaihu Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China;
| | - Holger B. Deising
- Institute for Agricultural and Nutritional Sciences, Section Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| |
Collapse
|
14
|
Liang W, Lu Z, Duan J, Jiang D, Xie J, Cheng J, Fu Y, Chen T, Li B, Yu X, Chen W, Lin Y. A novel alphahypovirus that infects the fungal plant pathogen Sclerotinia sclerotiorum. Arch Virol 2021; 167:213-217. [PMID: 34826002 DOI: 10.1007/s00705-021-05315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
A novel positive single-stranded RNA virus, Sclerotinia sclerotiorum hypovirus 9 (SsHV9), was identified in the plant-pathogenic Sclerotinia sclerotiorum strain GB375, which was associated with a garden bean plant in the United States. The complete genome of SsHV9 is 14,067 nucleotides in length, excluding the poly(A) tail. It has a single large open reading frame encoding a putative polyprotein (4,196 amino acids), which is predicted to contain a papain-like protease, a protein of unknown function, an RNA-dependent RNA polymerase, and an RNA helicase. Phylogenetic analysis based on a multiple alignment of amino acid sequences of polyproteins that suggested SsHV9 belongs to the proposed genus "Alphahypovirus" in the family Hypoviridae.
Collapse
Affiliation(s)
- Weibo Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zhongbo Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiasen Cheng
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weidong Chen
- US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, 99164, USA
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
15
|
Chun J, So KK, Ko YH, Kim DH. Molecular characteristics of a novel hypovirus from Trichoderma harzianum. Arch Virol 2021; 167:233-238. [PMID: 34674011 DOI: 10.1007/s00705-021-05253-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
We report a novel mycovirus with a positive-sense single-stranded (+)ss RNA genome, belonging to the family Hypoviridae, infecting Trichoderma harzianum strain M6. The complete genome sequence is 13,813 nucleotides long, excluding the poly(A) tail at the 3' end. Sequence analysis revealed that the genome has a single large open reading frame (ORF) encoding a 4,118-amino-acid polyprotein harboring five conserved motifs of a protease, two conserved domains of a protein of unknown function, an RNA-dependent RNA polymerase, and a helicase. Sequence comparisons revealed that the deduced amino acid sequence of the polyprotein is similar to those of other hypoviruses and is most similar to that of Bipolaris oryzae hypovirus 1 (35.1% identity). Phylogenetic analysis using full-length RdRp and helicase sequences showed that this virus clustered closely with known members of the proposed genus "Alphahypovirus" of the family Hypoviridae. We accordingly designated this novel mycovirus "Trichoderma harzianum hypovirus 2" (ThHV2).
Collapse
Affiliation(s)
- Jeesun Chun
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Kum-Kang So
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Yo-Han Ko
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Institute for Molecular Biology and Genetics, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Korea.
| |
Collapse
|
16
|
Yang S, Dai R, Salaipeth L, Huang L, Liu J, Andika IB, Sun L. Infection of Two Heterologous Mycoviruses Reduces the Virulence of Valsa mali, a Fungal Agent of Apple Valsa Canker Disease. Front Microbiol 2021; 12:659210. [PMID: 34113326 PMCID: PMC8186502 DOI: 10.3389/fmicb.2021.659210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Mycovirus infection has been widely shown to attenuate the virulence of phytopathogenic fungi. Valsa mali is an agriculturally important fungus that causes Valsa canker disease in apple trees. In this study, two unrelated mycoviruses [Cryphonectria hypovirus 1 (CHV1, genus Hypovirus, and single-stranded RNA) and Mycoreovirus 1 (MyRV1, genus Mycoreovirus, double-stranded RNA)] that originated from Cryphonectria parasitica (chestnut blight fungus) were singly or doubly introduced into V. mali via protoplast fusion. CHV1 and MyRV1 stably infected V. mali and caused a reduction in fungal vegetative growth and virulence. Co-infection of both viruses further reduced the virulence of V. mali but compromised the stability of CHV1 infection and horizontal transmission through hyphal anastomosis. Infections of MyRV1 and, to a lesser extent, CHV1 up-regulated the transcript expression of RNA silencing-related genes in V. mali. The accumulation of CHV1 (but not MyRV1) was elevated by the knockdown of dcl2, a key gene of the RNA silencing pathway. Similarly, the accumulation of CHV1 and the efficiency of the horizontal transmission of CHV1 during co-infection was restored by the knockdown of dcl2. Thus, CHV1 and MyRV1 are potential biological control agents for apple Valsa canker disease, but co-infection of both viruses has a negative effect on CHV1 infection in V. mali due to the activation of antiviral RNA silencing by MyRV1 infection.
Collapse
Affiliation(s)
- Shian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Ruoyin Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Jie Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
17
|
Mizutani Y, Uesaka K, Ota A, Calassanzio M, Ratti C, Suzuki T, Fujimori F, Chiba S. De novo Sequencing of Novel Mycoviruses From Fusarium sambucinum: An Attempt on Direct RNA Sequencing of Viral dsRNAs. Front Microbiol 2021; 12:641484. [PMID: 33927702 PMCID: PMC8076516 DOI: 10.3389/fmicb.2021.641484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
An increasing number of viruses are continuously being found in a wide range of organisms, including fungi. Recent studies have revealed a wide viral diversity in microbes and a potential importance of these viruses in the natural environment. Although virus exploration has been accelerated by short-read, high-throughput sequencing (HTS), and viral de novo sequencing is still challenging because of several biological/molecular features such as micro-diversity and secondary structure of RNA genomes. This study conducted de novo sequencing of multiple double-stranded (ds) RNA (dsRNA) elements that were obtained from fungal viruses infecting two Fusarium sambucinum strains, FA1837 and FA2242, using conventional HTS and long-read direct RNA sequencing (DRS). De novo assembly of the read data from both technologies generated near-entire genomic sequence of the viruses, and the sequence homology search and phylogenetic analysis suggested that these represented novel species of the Hypoviridae, Totiviridae, and Mitoviridae families. However, the DRS-based consensus sequences contained numerous indel errors that differed from the HTS consensus sequences, and these errors hampered accurate open reading frame (ORF) prediction. Although with its present performance, the use of DRS is premature to determine viral genome sequences, the DRS-mediated sequencing shows great potential as a user-friendly platform for a one-shot, whole-genome sequencing of RNA viruses due to its long-reading ability and relative structure-tolerant nature.
Collapse
Affiliation(s)
- Yukiyoshi Mizutani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Ayane Ota
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Matteo Calassanzio
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Fumihiro Fujimori
- Graduate School of Humanities and Life Sciences, Tokyo Kasei University, Itabashi, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4. BIOLOGY 2021; 10:biology10020100. [PMID: 33572564 PMCID: PMC7912522 DOI: 10.3390/biology10020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Host antiviral defense/viral counter-defense is an interesting topic in modern virology. RNA silencing is the primary antiviral mechanism in insects, plants, and fungi, while viruses encode and utilize RNA silencing suppressors against the host defense. Hypoviruses are positive-sense single-stranded RNA viruses with phylogenetic affinity to the picorna-like supergroup, including animal poliovirus and plant potyvirus. The prototype hypovirus Cryphonectria hypovirus 1, CHV1, is one of the best-studied fungal viruses. It is known to induce hypovirulence in the chestnut blight fungus, Cryphonectria parasitica, and encode an RNA silencing suppressor. CHV4 is another hypovirus asymptomatically that infects the same host fungus. This study shows that the N-terminal portion of the CHV4 polyprotein, termed p24, is a protease that autocatalytically cleaves itself from the rest of the viral polyprotein, and functions as an antiviral RNA silencing suppressor. Abstract Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)—likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1.
Collapse
|
19
|
Li X, Sui K, Xie J, Hai D, Yin W, Sossah FL, Jiang D, Song B, Li Y. Molecular characterization of a novel fusarivirus infecting the edible fungus Auricularia heimuer. Arch Virol 2020; 165:2689-2693. [PMID: 32812093 DOI: 10.1007/s00705-020-04781-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Abstract
Here, we describe a novel mycovirus, Auricularia heimuer fusarivirus 1 (AhFV1), isolated from the edible fungus Auricularia heimuer strain CCMJ1296. The virus has a single-stranded positive-sense [+ssRNA] genome of 7,127 nucleotides containing two overlapping open reading frames (ORFs) and a poly(A) tail. The large ORF1 encodes a polyprotein of 1,637 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) and DEAD-like helicase superfamily (DEXDc) domains. ORF2 encodes a putative 633-aa protein with unknown function. A BLAST search showed that the nucleotide sequence of the AhFV1 genome is 41.28% identical to that of Sclerotium rolfsii fusarivirus 2 and 40.49% identical to that of Sclerotium rolfsii fusarivirus 1. Phylogenetic analysis based on RdRp and helicase (Hel) sequences indicated that AhFV1 is related to unclassified mycoviruses and other fusariviruses. Our data suggest that AhFV1 should be classified as a member of the newly proposed family "Fusariviridae". This is the second virus and the first full genome sequence of a fusarivirus from A. heimuer.
Collapse
Affiliation(s)
- Xuefei Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Kunpeng Sui
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Weiqi Yin
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.,College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bing Song
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
20
|
Yao Z, Zou C, Peng N, Zhu Y, Bao Y, Zhou Q, Wu Q, Chen B, Zhang M. Virome Identification and Characterization of Fusarium sacchari and F. andiyazi: Causative Agents of Pokkah Boeng Disease in Sugarcane. Front Microbiol 2020; 11:240. [PMID: 32140150 PMCID: PMC7042383 DOI: 10.3389/fmicb.2020.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Fusarium sacchari and Fusarium andiyazi are two devastating sugarcane pathogens that cause pokkah boeng disease (PBD) in China. RNA_Seq was conducted to identify mycoviruses in F. sacchari and F. andiyazi isolates collected from PBD symptom-showing sugarcane plants across China. Fifteen isolates with a normal, debilitated, or abnormal phenotype in colony morphology were screened out for the existence of dsRNA from 104 Fusarium isolates. By sequencing the mixed pool of dsRNA from these Fusarium isolates, a total of 26 contigs representing complete or partial genome sequences of ten mycoviruses and their strains were identified, including one virus belonging to Hypoviridae, two mitoviruses with seven strains belonging to Narnaviridae, one virus of Chrysoviridae, and one alphavirus-like virus. RT-PCR amplification with primers specific to individual mycoviruses revealed that mitoviruses were the most prevalent and the alphavirus-like virus and chrysovirus were the least prevalent. In terms of host preference, more mitoviruses were found in F. andiyazi than in F. sacchari. Fusarium sacchari hypovirus 1 with a 13.9 kb genome and a defective genome of 12.2 kb, shares 54% identity at the amino acid level to the Wuhan insect virus 14, which is an unclassified hypovirus identified from insect meta-transcriptomics. The alphavirus-like virus, Fusarium sacchari alphavirus-like virus 1 (FsALV1), seemed to hold a distinct status amid fungal alphavirus-like viruses, with the highest identity of 27% at the amino acid level to Sclerotium rolfsii alphavirus-like virus 3 and 29% to a hepevirus, Ferret hepatitis E virus. While six of the seven mitoviruses shared 72-94% identities to known mitoviruses, Fusarium andiyazi mitovirus 2 was most similar to Alternaria brassicicola mitovirus with an identity of only 49% between the two viruses. Transmission of FsALV1 and Fusarium sacchari chrysovirus 1 (FsCV1) from F. sacharri to F. commune was observed and the characterization of the four-segment dsRNA chrysovirus was performed with aid of electron microscopy and analysis of the encapsidated RNAs. These findings provide insight into the diversity and spectrum of mycoviruses in PBD pathogens and should be useful for exploring agents to control the disease.
Collapse
Affiliation(s)
- Ziting Yao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Chengwu Zou
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Na Peng
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- College of Life Sciences and Technology, Guangxi University, Nanning, China
| | - Yu Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Qiujuan Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- College of Life Sciences and Technology, Guangxi University, Nanning, China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Li Q, Huang W, Hai D, Wang Y, Xie J, Wang M. The complete genome sequence of a novel hypovirus infecting Bipolaris oryzae. Arch Virol 2020; 165:1027-1031. [PMID: 32056004 DOI: 10.1007/s00705-020-04556-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 11/26/2022]
Abstract
Hypoviruses are positive-sense single-stranded RNA mycovirus that infect filamentous fungi. However, hypoviruses have not been reported in Bipolaris oryzae, an important phytopathogenic fungus in water bamboo and rice. Here, we report the characterization of a novel hypovirus, tentatively named "Bipolaris oryzae hypovirus 1" (BoHV1), isolated from strain ES35 of B. oryzae infecting water bamboo. The complete genome of BoHV1 consists of 13,596 nucleotides and a poly(A) tail at the 3' end. BoHV1 has single open reading frame (ORF) and encodes a putative polyprotein (4,218 amino acids) containing four potential conserved domains for a papain-like protease, a protein of unknown function (DUF3525), RNA-dependent RNA polymerase (RdRp), and helicase. Phylogenetic analysis of the polyprotein, RdRp, and helicase domains suggested that BoHV1 belongs to the genus Hypovirus within the family Hypoviridae. This is the first report of the presence of a hypovirus in the phytopathogenic fungus B. oryzae.
Collapse
Affiliation(s)
- Qin Li
- Hubei key Laboratory of Biological Resources Protection and Utilization, College of Forestry and Horticulture, Hubei Minzu University, Enshi, 445000, People's Republic of China
| | - Wanqin Huang
- Hubei key Laboratory of Biological Resources Protection and Utilization, College of Forestry and Horticulture, Hubei Minzu University, Enshi, 445000, People's Republic of China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Minghong Wang
- Hubei key Laboratory of Biological Resources Protection and Utilization, College of Forestry and Horticulture, Hubei Minzu University, Enshi, 445000, People's Republic of China.
| |
Collapse
|
22
|
Torres-Trenas A, Cañizares MC, García-Pedrajas MD, Pérez-Artés E. Molecular and Biological Characterization of the First Hypovirus Identified in Fusarium oxysporum. Front Microbiol 2020; 10:3131. [PMID: 32038565 PMCID: PMC6992542 DOI: 10.3389/fmicb.2019.03131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
A novel mycovirus named Fusarium oxysporum f. sp. dianthi hypovirus 2 (FodHV2) has been identified infecting isolates Fod 408 and Fod 409 of Fusarium oxysporum f. sp. dianthi from Morocco. The genome of FodHV2 is 9,444 nucleotides long excluding the poly(A) tail, and has a single open reading frame encoding a polyprotein. The polyprotein contains three highly conserved domains of UDP glucose/sterol glucosyltransferase, RNA-dependent RNA polymerase, and viral RNA helicase. In addition, particular residues of Cys, Hys, and Gly detected in the N-terminal region suggest the presence of the catalytic site of a highly diverged papain-like protease. Genomic organization, presence of particular conserved motifs, and phylogenetic analyses based on multiple alignments clearly grouped FodHV2 with the members of the family Hypoviridae. FodHV2 was transferred by hyphal anastomosis to a recipient HygR-tagged virus-free strain. The comparison of the infected and non-infected isogenic strains showed that FodHV2 did not alter the vegetative growth, neither the conidiation nor the virulence of its fungal host. Efficiency of FodHV2 transmission through the conidia was 100% in both the original and the recipient infected-isolates. To the best of our knowledge, this is the first report of a hypovirus infecting the plant pathogen F. oxysporum, and also the first one of a hypovirus detected in a fungal strain from the African continent.
Collapse
Affiliation(s)
- Almudena Torres-Trenas
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - M. Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - M. Dolores García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Encarnación Pérez-Artés
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
23
|
García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS. Mycoviruses in Biological Control: From Basic Research to Field Implementation. PHYTOPATHOLOGY 2019; 109:1828-1839. [PMID: 31398087 DOI: 10.1094/phyto-05-19-0166-rvw] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycoviruses from plant pathogens can induce hypovirulence (reduced virulence) in their host fungi and have gained considerable attention as potential biocontrol tools. An increasing number of mycoviruses that induce fungal hypovirulence, from a wide variety of taxonomic groups, are currently being reported. Successful application of these viruses in disease management is greatly dependent on their ability to spread in the natural populations of the pathogen. Mycoviruses generally lack extracellular routes of transmission. Hyphal anastomosis is the main route of horizontal mycovirus transmission to other isolates, and conidia of vertical transmission to the progeny. Transmission efficiencies are influenced by both the fungal host and the infecting virus. Interestingly, artificial transfection methods have shown that potential biocontrol mycoviruses often have the ability to infect a variety of fungi. This expands their possible use to the control of pathogens others than those where they were identified. Mycovirus research is also focused on gaining insights into their complex molecular biology and the molecular bases of fungus-virus interactions. This knowledge could be exploited to manipulate the mycovirus and/or the host and generate combinations with enhanced properties in biological control. Finally, when exploring the use of mycoviruses in field conditions, the pathogen life style and the characteristics of the disease and crops affected will deeply impact the specific challenges to overcome, and the development of biocontrol formulations and delivery methods.
Collapse
Affiliation(s)
- M D García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," 29750 Algarrobo-Costa, Málaga, Spain
| | - M C Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," 29750 Algarrobo-Costa, Málaga, Spain
| | - J L Sarmiento-Villamil
- Centre d'étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - A G Jacquat
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, Córdoba, X5016GCA, Argentina
| | - J S Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET), Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 1611, Córdoba, X5016GCA, Argentina
| |
Collapse
|
24
|
You J, Zhou K, Liu X, Wu M, Yang L, Zhang J, Chen W, Li G. Defective RNA of a Novel Mycovirus with High Transmissibility Detrimental to Biocontrol Properties of Trichoderma spp. Microorganisms 2019; 7:microorganisms7110507. [PMID: 31671828 PMCID: PMC6920978 DOI: 10.3390/microorganisms7110507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
Trichoderma species are a group of fungi which is widely distributed in major terrestrial ecosystems; they are also commonly used as biocontrol agents for many plant diseases. A virus, namely Trichoderma harzianum hypovirus 1 (ThHV1), was identified in T. harzianum isolate T-70, and also infected isolate T-70D, together with its defective RNA (ThHV1-S). The ThHV1 genome possessed two Open Reading Frames (ORFs), namely ORF1 and ORF2. The start codon of ORF2 overlapped with the stop codon of ORF1 in a 43 nt long region. The polypeptide encoded by ORF2 of ThHV1 shared sequence similarities with those of betahypoviruses, indicating that ThHV1 is a novel member of Hypoviridea. Isolate T-70D, carrying both ThHV1 and ThHV1-S, showed abnormal biological properties, notably a decreased mycoparasitism ability when compared with isolate T-70. Both ThHV1 and ThHV1-S could be vertically transmitted to conidia and horizontally transmitted to T. harzianum isolate T-68 and T. koningiopsis T-51. The derivative strains carrying both ThHV1 and ThHV1-S showed decreased mycoparasitism ability, whereas strains carrying ThHV1 alone were normal, indicating that ThHV1-S is closely associated with the decreased mycoparasitism ability of T. harzianum isolate T-70D. ThHV1 was widely detected in isolates of T. harzianum, T. koningiopsis and T. atroviride originating from soil of China. Therefore, viruses in fungal biocontrol agents may also be a factor associated with the stability of their application.
Collapse
Affiliation(s)
- Jiaqi You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Kang Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA.
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC. Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 2019; 14:e0219207. [PMID: 31339899 PMCID: PMC6655640 DOI: 10.1371/journal.pone.0219207] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022] Open
Abstract
The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina. Using a simple but effective computational pipeline that uses reads discarded during normal RNA-seq analyses, followed by identification of a viral RNA-dependent RNA polymerase (RdRP) motif in de novo assembled contigs, 59 viruses from 44 different fungi were identified. Among the viruses identified, 88% were determined to be new species and 68% are, to our knowledge, the first virus described from the fungal species. Comprehensive analyses of both nucleotide and inferred protein sequences characterize the phylogenetic relationships between these viruses and the known set of mycoviral sequences and support the classification of up to four new families and two new genera. Thus the results provide a deeper understanding of the scope of mycoviral diversity while also increasing the distribution of fungal hosts. Further, this study demonstrates the suitability of analyzing RNA-seq data to facilitate rapid discovery of new viruses.
Collapse
Affiliation(s)
- Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Emily E. Holcomb
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Robyn L. Allscheid
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - James C. Carrington
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
26
|
Li H, Bian R, Liu Q, Yang L, Pang T, Salaipeth L, Andika IB, Kondo H, Sun L. Identification of a Novel Hypovirulence-Inducing Hypovirus From Alternaria alternata. Front Microbiol 2019; 10:1076. [PMID: 31156589 PMCID: PMC6530530 DOI: 10.3389/fmicb.2019.01076] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mycoviruses are wide spread throughout almost all groups of fungi but only a small number of mycoviruses can attenuate the growth and virulence of their fungal hosts. Alternaria alternata is an ascomycete fungus that causes leaf spot diseases on various crop plants. In this study, we identified a novel ssRNA mycovirus infecting an A. alternata f. sp. mali strain isolated from an apple orchard in China. Sequence analyses revealed that this virus is related to hypoviruses, in particular to Wuhan insect virus 14, an unclassified hypovirus identified from insect meta-transcriptomics, as well as other hypoviruses belonging to the genus Hypovirus, and therefore this virus is designed as Alternaria alternata hypovirus 1 (AaHV1). The genome of AaHV1 contains a single large open-reading frame encoding a putative polyprotein (∼479 kDa) with a cysteine proteinase-like and replication-associated domains. Curing AaHV1 from the fungal host strain indicated that the virus is responsible for the slow growth and reduced virulence of the host. AaHV1 defective RNA (D-RNA) with internal deletions emerging during fungal subcultures but the presence of D-RNA does not affect AaHV1 accumulation and pathogenicities. Moreover, AaHV1 could replicate and confer hypovirulence in Botryosphaeria dothidea, a fungal pathogen of apple white rot disease. This finding could facilitate better understanding of A. alternata pathogenicity and is relevant for development of biocontrol methods of fungal diseases.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ida Bagus Andika
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Co-Infection with Three Mycoviruses Stimulates Growth of a Monilinia fructicola Isolate on Nutrient Medium, but Does Not Induce Hypervirulence in a Natural Host. Viruses 2019; 11:v11010089. [PMID: 30669656 PMCID: PMC6356717 DOI: 10.3390/v11010089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/02/2022] Open
Abstract
Monilinia fructicola and Monilinia laxa are the most destructive fungal species infecting stone fruit (Prunus species). High-throughput cDNA sequencing of M. laxa and M. fructicola isolates collected from stone fruit orchards revealed that 14% of isolates were infected with one or more of three mycoviruses: Sclerotinia sclerotiorum hypovirus 2 (SsHV2, genus Hypovirus), Fusarium poae virus 1 (FPV1, genus Betapartitivirus), and Botrytis virus F (BVF, genus Mycoflexivirus). Isolate M196 of M. fructicola was co-infected with all three viruses, and this isolate was studied further. Several methods were applied to cure M196 of one or more mycoviruses. Of these treatments, hyphal tip culture either alone or in combination with antibiotic treatment generated isogenic lines free of one or more mycoviruses. When isogenic fungal lines were cultured on nutrient agar medium in vitro, the triple mycovirus-infected parent isolate M196 grew 10% faster than any of the virus-cured isogenic lines. BVF had a slight inhibitory effect on growth, and FPV1 did not influence growth. Surprisingly, after inoculation to fruits of sweet cherry, there were no significance differences in disease progression between isogenic lines, suggesting that these mycoviruses did not influence the virulence of M. fructicola on a natural host.
Collapse
|
28
|
Zhu JZ, Zhu HJ, Gao BD, Zhou Q, Zhong J. Diverse, Novel Mycoviruses From the Virome of a Hypovirulent Sclerotium rolfsii Strain. FRONTIERS IN PLANT SCIENCE 2018; 9:1738. [PMID: 30542362 PMCID: PMC6277794 DOI: 10.3389/fpls.2018.01738] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 05/10/2023]
Abstract
Sclerotium rolfsii, which causes southern blight in a wide variety of crops, is a devastating plant pathogen worldwide. Mycoviruses that induce hypovirulence in phytopathogenic fungi are potential biological control resources against fungal plant diseases. However, in S. rolfsii, mycoviruses are rarely reported. In a previous study, we found a hypovirulent strain carrying a diverse pattern of dsRNAs. Here, we utilized the RNA_Seq technique to detect viral sequences. Deep sequencing, RT-PCR and Sanger sequencing validation analyses revealed that this strain harbors various new viral species that show affinity to the distinctly established and proposed families Benyviridae, Endornaviridae, Fusariviridae, Hypoviridae, and Fusagraviridae. Moreover, some viral sequences that could not be assigned to any of the existing families or orders were also identified and showed similarities to the Alphavirus, Ourmiavirus, phlegivirus-like and Curvularia thermal tolerance virus-like groups. In addition, we also conducted deep sequencing analysis of small RNAs in the virus-infecting fugal strain. The results indicated that the Dicer-mediated gene silencing mechanism was present in S. rolfsii. This is the first report of viral diversity in a single S. rolfsii fungal strain, and the results presented herein might provide insight into the taxonomy and evolution of mycoviruses and be useful for the exploration of mycoviruses as biocontrol agents.
Collapse
Affiliation(s)
| | | | | | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| |
Collapse
|
29
|
Hao F, Ding T, Wu M, Zhang J, Yang L, Chen W, Li G. Two Novel Hypovirulence-Associated Mycoviruses in the Phytopathogenic Fungus Botrytis cinerea: Molecular Characterization and Suppression of Infection Cushion Formation. Viruses 2018; 10:E254. [PMID: 29757259 PMCID: PMC5977247 DOI: 10.3390/v10050254] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
Botrytis cinerea is a necrotrophic fungus causing disease on many important agricultural crops. Two novel mycoviruses, namely Botrytis cinerea hypovirus 1 (BcHV1) and Botrytis cinerea fusarivirus 1 (BcFV1), were fully sequenced. The genome of BcHV1 is 10,214 nt long excluding a poly-A tail and possesses one large open reading frame (ORF) encoding a polyprotein possessing several conserved domains including RNA-dependent RNA polymerase (RdRp), showing homology to hypovirus-encoded polyproteins. Phylogenetic analysis indicated that BcHV1 may belong to the proposed genus Betahypovirus in the viral family Hypoviridae. The genome of BcFV1 is 8411 nt in length excluding the poly A tail and theoretically processes two major ORFs, namely ORF1 and ORF2. The larger ORF1 encoded polypeptide contains protein domains of an RdRp and a viral helicase, whereas the function of smaller ORF2 remains unknown. The BcFV1 was phylogenetically clustered with other fusariviruses forming an independent branch, indicating BcFV1 was a member in Fusariviridae. Both BcHV1 and BcFV1 were capable of being transmitted horizontally through hyphal anastomosis. Infection by BcHV1 alone caused attenuated virulence without affecting mycelial growth, significantly inhibited infection cushion (IC) formation, and altered expression of several IC-formation-associated genes. However, wound inoculation could fully rescue the virulence phenotype of the BcHV1 infected isolate. These results indicate the BcHV1-associated hypovirulence is caused by the viral influence on IC-formation-associated pathways.
Collapse
Affiliation(s)
- Fangmin Hao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Ding
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mingde Wu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Yang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weidong Chen
- U.S. Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA.
| | - Guoqing Li
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- The Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Velasco L, Arjona-Girona I, Ariza-Fernández MT, Cretazzo E, López-Herrera C. A Novel Hypovirus Species From Xylariaceae Fungi Infecting Avocado. Front Microbiol 2018; 9:778. [PMID: 29867781 PMCID: PMC5952064 DOI: 10.3389/fmicb.2018.00778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
The white rot root disease caused by Rosellinia necatrix is a major concern for avocado cultivation in Spain. Healthy escapes of avocado trees surrounded by diseased trees prompted us to hypothesize the presence of hypovirulent R. necatrix due to mycovirus infections. Recently, we reported the presence of another fungal species, Entoleuca sp., belonging to the Xylariaceae, that was also found in healthy avocado trees and frequently co-infecting the same roots than R. necatrix. We investigated the presence of mycoviruses that might explain the hypovirulence. For that, we performed deep sequencing of dsRNAs from two isolates of Entoleuca sp. that revealed the simultaneous infection of several mycoviruses, not described previously. In this work, we report a new member of the Hypoviridae, tentatively named Entoleuca hypovirus 1 (EnHV1). The complete genome sequence was obtained for two EnHV1 strains, which lengths resulted to be 14,958 and 14,984 nt, respectively, excluding the poly(A) tails. The genome shows two ORFs separated by a 32-nt inter-ORF, and both 5′- and 3′-UTRs longer than any other hypovirus reported to date. The analysis of virus-derived siRNA populations obtained from Entoleuca sp. demonstrated antiviral silencing activity in this fungus. We screened a collection of Entoleuca sp. and R. necatrix isolates and found that EnHV1 was present in both fungal species. A genetic population analysis of EnHV1 strains revealed the presence of two main clades, each of them including members from both Entoleuca sp. and R. necatrix, which suggests intra- and interspecific virus transmission in the field. Several attempts failed to cure Entoleuca sp. from EnHV1. However, all Entoleuca sp. isolates collected from avocado, whether harboring the virus or not, showed hypovirulence. Conversely, all R. necatrix isolates were pathogenic to that crop, regardless of being infected by EnHV1.
Collapse
Affiliation(s)
- Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria, Málaga, Spain
| | - Isabel Arjona-Girona
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | | | - Enrico Cretazzo
- Instituto Andaluz de Investigación y Formación Agraria, Málaga, Spain
| | - Carlos López-Herrera
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
31
|
Arjona-Lopez JM, Telengech P, Jamal A, Hisano S, Kondo H, Yelin MD, Arjona-Girona I, Kanematsu S, Lopez-Herrera CJ, Suzuki N. Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses. Environ Microbiol 2018; 20:1464-1483. [PMID: 29411500 DOI: 10.1111/1462-2920.14065] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/02/2018] [Indexed: 11/30/2022]
Abstract
To reveal mycovirus diversity, we conducted a search of as-yet-unexplored Mediterranean isolates of the phytopathogenic ascomycete Rosellinia necatrix for virus infections. Of seventy-nine, eleven fungal isolates tested RNA virus-positive, with many showing coinfections, indicating a virus incidence of 14%, which is slightly lower than that (approximately 20%) previously reported for extensive surveys of over 1000 Japanese R. necatrix isolates. All viral sequences were fully or partially characterized by Sanger and next-generation sequencing. These sequences appear to represent isolates of various new species spanning at least 6 established or previously proposed families such as Partiti-, Hypo-, Megabirna-, Yado-kari-, Fusagra- and Fusarividae, as well as a newly proposed family, Megatotiviridae. This observation greatly expands the diversity of R. necatrix viruses, because no hypo-, fusagra- or megatotiviruses were previously reported from R. necatrix. The sequence analyses showed a rare horizontal gene transfer event of the 2A-like protease domain between a dsRNA (phlegivirus) and a positive-sense, single-stranded RNA virus (hypovirus). Moreover, many of the newly detected viruses showed the closest relation to viruses reported from fungi other than R. necatrix, such as Fusarium spp., which are sympatric to R. necatrix. These combined results imply horizontal virus transfer between these soil-inhabitant fungi.
Collapse
Affiliation(s)
- Juan Manuel Arjona-Lopez
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.,Instituto de Agricultura Sostenible C.S.I.C., Alameda del Obispo, s/n. CP: 14004, Cordoba, Spain
| | - Paul Telengech
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Atif Jamal
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.,Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad 45500, Pakistan
| | - Sakae Hisano
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Mery Dafny Yelin
- Northern Agriculture Research & Development, Migal Galilee Technology Center, P.O.B. 831, Kiryat Shemona 11016, Israel
| | - Isabel Arjona-Girona
- Instituto de Agricultura Sostenible C.S.I.C., Alameda del Obispo, s/n. CP: 14004, Cordoba, Spain
| | - Satoko Kanematsu
- NARO Headquarter, National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan.,Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO), Morioka, Iwate 020-0123, Japan
| | | | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
32
|
Abstract
In contrast to well-established internal ribosomal entry site (IRES)-mediated translational initiation in animals and plants, no IRESs were established in fungal viral or cellular RNAs. To identify IRES elements in mycoviruses, we developed a luciferase-based dual-reporter detection system in Cryphonectria parasitica, a model filamentous fungus for virus-host interactions. A bicistronic construct entails a codon-optimized Renilla and firefly luciferase (ORluc and OFluc, respectively) gene, between which potential IRES sequences can be inserted. In this system, ORluc serves as an internal control, while OFluc represents IRES activity. Virus sequences in the 5′ untranslated regions (UTRs) of the genomes of diverse positive-sense single-stranded RNA and double-stranded RNA (dsRNA) viruses were analyzed. The results show relatively high IRES activities for Cryphonectria hypovirus 1 (CHV1) and CHV2 and faint but measurable activity for CHV3. The weak IRES signal of CHV3 may be explained by its monocistronic nature, differing from the bicistronic nature of CHV1 and CHV2. This would allow these three hypoviruses to have similar rates of translation of replication-associated protein per viral mRNA molecule. The importance of 24 5′-proximal codons of CHV1 as well as the 5′ UTR for IRES function was confirmed. Furthermore, victoriviruses and chrysoviruses tested IRES positive, whereas mycoreoviruses, partitiviruses, and quadriviruses showed similar Fluc activities as the negative controls. Overall, this study represents the first development of an IRES identification system in filamentous fungi based on the codon-optimized dual-luciferase assay and provides evidence for IRESs in filamentous fungi. Cap-independent, internal ribosomal entry site (IRES)-mediated translational initiation is often used by virus mRNAs and infrequently by cellular mRNAs in animals and plants. However, no IRESs have been established in fungal virus RNAs or cellular RNAs in filamentous fungi. Here, we report the development of a dual-luciferase assay system and measurement of the IRES activities of fungal RNA viruses in a model filamentous fungal host, Cryphonectria parasitica. Viruses identified as IRES positive include hypoviruses (positive-sense RNA viruses, members of the expanded Picornavirus supergroup), totiviruses (nonsegmented dsRNA viruses), and chrysoviruses (tetrasegmented dsRNA viruses). No IRES activities were observed in the 5′ untranslated regions of mycoreoviruses (11-segmented dsRNA viruses), quadriviruses (tetrasegmented dsRNA viruses), or partitiviruses (bisegmented dsRNA viruses). This study provides the first evidence for IRES activities in diverse RNA viruses in filamentous fungi and is a first step toward identifying trans-acting host factors and cis-regulatory viral RNA elements.
Collapse
|
33
|
Ong JW, Li H, Sivasithamparam K, Dixon KW, Jones MG, Wylie SJ. Novel and divergent viruses associated with Australian orchid-fungus symbioses. Virus Res 2018; 244:276-283. [DOI: 10.1016/j.virusres.2017.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 01/01/2023]
|
34
|
Wang ZH, Zhao ZX, Hong N, Ni D, Cai L, Xu WX, Xiao YN. Characterization of Causal Agents of a Novel Disease Inducing Brown-Black Spots on Tender Tea Leaves in China. PLANT DISEASE 2017; 101:1802-1811. [PMID: 30676920 DOI: 10.1094/pdis-04-17-0495-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel disease characterized by small brown-black spots (1 to 2 mm in diameter) on tender tea leaves (Camellia sinensis) has been observed in many regions of Hubei Province, China, which severely affects the yield and quality of tea. Tea leaf samples with typical symptoms were collected from three major tea-cultivation regions of Hubei, and were subjected to pathogen isolation for etiological analysis. As a result, 34 Pestalotiopsis isolates were obtained from 20 samples, and they were identified as Pestalotiopsis theae (14 isolates), P. camelliae (12), and P. clavispora (8), determined by morphologies and phylogenetic analysis based on internal transcribed spacer, and partial β-tubulin and translation elongation factor 1-alpha genes. Pathogenicity tests on detached tea leaves showed that no matter what mycelial discs or conidium suspensions were used, inoculation of the Pestalotiopsis fungi could result in small brown-black spots (1 to 2 mm in diameter) on wounded leaves, similar to those observed in the field in the sizes and colors. It also revealed that only P. theae had pathogenicity on unwounded tea leaves, and P. theae and P. clavispora showed significantly higher virulence than P. camelliae. Inoculation test with conidium suspension on intact tea leaves in the field further confirmed that P. theae as the pathogen of brown-black spots. Reisolation of the pathogens from diseased leaves confirmed that the symptom was caused by the inoculation of Pestalotiopsis fungi. The P. theae isolates responsible for brown-black spots were also compared with those for tea gray blight disease in growth rate, pathogenicity, and molecular characteristics in parallel. To our knowledge, this is the first report that the Pestalotiopsis fungi cause brown-black spot disease on tender tea leaves. The results provide important implications for the prevention and management of this economically important disease.
Collapse
Affiliation(s)
- Z H Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Z X Zhao
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - N Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Dejiang Ni
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - L Cai
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - W X Xu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Y N Xiao
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, P. R. China; Key Laboratory of Plant Pathology of Hubei Province, Wuhan, Hubei 430070, P. R. China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
35
|
Abstract
Viruses with double-stranded RNA genomes form isometric particles or are capsidless. Here we report a double-stranded RNA virus, Colletotrichum camelliae filamentous virus 1 (CcFV-1) isolated from a fungal pathogen, that forms filamentous particles. CcFV-1 has eight genomic double-stranded RNAs, ranging from 990 to 2444 bp, encoding 10 putative open reading frames, of which open reading frame 1 encodes an RNA-dependent RNA polymerase and open reading frame 4 a capsid protein. When inoculated, the naked CcFV-1 double-stranded RNAs are infectious and induce the accumulation of the filamentous particles in vivo. CcFV-1 is phylogenetically related to Aspergillus fumigatus tetramycovirus-1 and Beauveria bassiana polymycovirus-1, but differs in morphology and in the number of genomic components. CcFV-1 might be an intermediate virus related to truly capsidated viruses, or might represent a distinct encapsidating strategy. In terms of genome and particle architecture, our findings are a significant addition to the knowledge of the virosphere diversity. Viruses with double-stranded RNA (dsRNA) genomes form typically isometric particles or are capsid-less. Here, the authors identify a mycovirus with an eight-segmented dsRNA genome that forms exceptionally long filamentous particles and could represent an evolutionary link between ssRNA and dsRNA viruses.
Collapse
|
36
|
Ding Z, Zhou T, Guo LY. Characterization of a novel strain of Botryosphaeria dothidea chrysovirus 1 from the apple white rot pathogen Botryosphaeria dothidea. Arch Virol 2017; 162:2097-2102. [DOI: 10.1007/s00705-017-3320-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/25/2017] [Indexed: 12/24/2022]
|
37
|
Complete Genome Sequence of a Novel Hypovirus from the Phytopathogenic Fungus Fusarium langsethiae. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01722-16. [PMID: 28254984 PMCID: PMC5334591 DOI: 10.1128/genomea.01722-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a novel positive single-stranded RNA virus, termed Fusarium langsethiae hypovirus 1 (FlHV1), from the isolate AH32 of the phytopathogenic fungus Fusarium langsethiae. The properties of FlHV1 permit assignment to the genus Alphahypovirus in the family Hypoviridae. This is the first report of a mycovirus identified in F. langsethiae.
Collapse
|
38
|
Characterization of a novel single-stranded RNA virus, closely related to fusariviruses, infecting the plant pathogenic fungus Alternaria brassicicola. Virus Res 2016; 217:1-7. [DOI: 10.1016/j.virusres.2015.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/21/2022]
|
39
|
Li P, Lin Y, Zhang H, Wang S, Qiu D, Guo L. Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Virology 2015; 489:86-94. [PMID: 26744993 DOI: 10.1016/j.virol.2015.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/05/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Abstract
We isolated a novel mycovirus, Fusarium graminearum mycotymovirus 1 (FgMTV1/SX64), which is related to members of the family Tymoviridae, from the plant pathogenic fungus F. graminearum strain SX64. The complete 7863 nucleotide sequence of FgMTV1/SX64, excluding the poly (A) tail, was determined. The genome of FgMTV1/SX64 is predicted to contain four open reading frames (ORFs). The largest ORF1 is 6723 nucleotides (nt) in length and encodes a putative polyprotein of 2242 amino acids (aa), which contains four conserved domains, a methyltransferase (Mtr), tymovirus endopeptidase (Pro), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp), of the replication-associated proteins (RPs) of the positive-strand RNA viruses. ORFs 2-4 putatively encode three putative small hypothetical proteins, but their functions are still unknown. Sequence alignments and phylogenetic analyses based on the putative RP protein and the three conserved domains (Mtr, Hel and RdRp) showed that FgMTV1/SX64 is most closely related to, but distinctly branched from, the viruses from the family Tymoviridae. Although FgMTV1/SX64 infection caused mild or no effect on conidia production, biomass and virulence of its host F. graminearum strain SX64, its infection had significant effects on the growth rate, colony diameter and deoxynivalenol (DON) production. This is the first molecular characterization of a tymo-like mycovirus isolated from a plant pathogenic fungus. It is proposed that the mycovirus FgMTV1/SX64 is a representative member of new proposed lineage Mycotymovirus in the family Tymoviridae.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yanhong Lin
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hailong Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
40
|
Marzano SYL, Hobbs HA, Nelson BD, Hartman GL, Eastburn DM, McCoppin NK, Domier LL. Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. J Virol 2015; 89:5060-71. [PMID: 25694604 PMCID: PMC4403457 DOI: 10.1128/jvi.03199-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A recombinant strain of Sclerotinia sclerotiorum hypovirus 2 (SsHV2) was identified from a North American Sclerotinia sclerotiorum isolate (328) from lettuce (Lactuca sativa L.) by high-throughput sequencing of total RNA. The 5'- and 3'-terminal regions of the genome were determined by rapid amplification of cDNA ends. The assembled nucleotide sequence was up to 92% identical to two recently reported SsHV2 strains but contained a deletion near its 5' terminus of more than 1.2 kb relative to the other SsHV2 strains and an insertion of 524 nucleotides (nt) that was distantly related to Valsa ceratosperma hypovirus 1. This suggests that the new isolate is a heterologous recombinant of SsHV2 with a yet-uncharacterized hypovirus. We named the new strain Sclerotinia sclerotiorum hypovirus 2 Lactuca (SsHV2L) and deposited the sequence in GenBank with accession number KF898354. Sclerotinia sclerotiorum isolate 328 was coinfected with a strain of Sclerotinia sclerotiorum endornavirus 1 and was debilitated compared to cultures of the same isolate that had been cured of virus infection by cycloheximide treatment and hyphal tipping. To determine whether SsHV2L alone could induce hypovirulence in S. sclerotiorum, a full-length cDNA of the 14,538-nt viral genome was cloned. Transcripts corresponding to the viral RNA were synthesized in vitro and transfected into a virus-free isolate of S. sclerotiorum, DK3. Isolate DK3 transfected with SsHV2L was hypovirulent on soybean and lettuce and exhibited delayed maturation of sclerotia relative to virus-free DK3, completing Koch's postulates for the association of hypovirulence with SsHV2L. IMPORTANCE A cosmopolitan fungus, Sclerotinia sclerotiorum infects more than 400 plant species and causes a plant disease known as white mold that produces significant yield losses in major crops annually. Mycoviruses have been used successfully to reduce losses caused by fungal plant pathogens, but definitive relationships between hypovirus infections and hypovirulence in S. sclerotiorum were lacking. By establishing a cause-and-effect relationship between Sclerotinia sclerotiorum hypovirus Lactuca (SsHV2L) infection and the reduction in host virulence, we showed direct evidence that hypoviruses have the potential to reduce the severity of white mold disease. In addition to intraspecific recombination, this study showed that recent interspecific recombination is an important factor shaping viral genomes. The construction of an infectious clone of SsHV2L allows future exploration of the interactions between SsHV2L and S. sclerotiorum, a widespread fungal pathogen of plants.
Collapse
Affiliation(s)
| | - Houston A Hobbs
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Berlin D Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| | - Darin M Eastburn
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Nancy K McCoppin
- United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| |
Collapse
|
41
|
Li P, Zhang H, Chen X, Qiu D, Guo L. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology 2015; 481:151-60. [PMID: 25781585 DOI: 10.1016/j.virol.2015.02.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/12/2015] [Accepted: 02/16/2015] [Indexed: 01/13/2023]
Abstract
A novel mycovirus, termed Fusarium graminearum Hypovirus 2 (FgHV2/JS16), isolated from a plant pathogenic fungus, Fusarium graminearum strain JS16, was molecularly and biologically characterized. The genome of FgHV2/JS16 is 12,800 nucleotides (nts) long, excluding the poly (A) tail. This genome has only one large putative open reading frame, which encodes a polyprotein containing three normal functional domains, papain-like protease, RNA-dependent RNA polymerase, RNA helicase, and a novel domain with homologous bacterial SMC (structural maintenance of chromosomes) chromosome segregation proteins. A defective RNA segment that is 4553-nts long, excluding the poly (A) tail, was also detected in strain JS16. The polyprotein shared significant aa identities with Cryphonectria hypovirus 1 (CHV1) (16.8%) and CHV2 (16.2%). Phylogenetic analyses based on multiple alignments of the polyprotein clearly divided the members of Hypoviridae into two major groups, suggesting that FgHV2/JS16 was a novel hypovirus of a newly proposed genus-Alphahypovirus-composed of the members of Group 1, including CHV1, CHV2, FgHV1 and Sclerotinia sclerotiorum hypovirus 2. FgHV2/JS16 was shown to be associated with hypovirulence phenotypes according to comparisons of the biological properties shared between FgHV2/JS16-infected and FgHV2/JS16-free isogenic strains. Furthermore, we demonstrated that FgHV2/JS16 infection activated the RNA interference pathway in Fusarium graminearum by relative quantitative real time RT-PCR.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hailong Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
42
|
Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology 2015; 479-480:356-68. [PMID: 25771805 DOI: 10.1016/j.virol.2015.02.034] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, KY, USA.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Daohong Jiang
- State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
43
|
Molecular characterization of two positive-strand RNA viruses co-infecting a hypovirulent strain of Sclerotinia sclerotiorum. Virology 2014; 464-465:450-459. [DOI: 10.1016/j.virol.2014.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/04/2014] [Accepted: 07/05/2014] [Indexed: 11/24/2022]
|
44
|
Characterisation of a novel hypovirus from Sclerotinia sclerotiorum potentially representing a new genus within the Hypoviridae. Virology 2014; 464-465:441-449. [PMID: 25108682 DOI: 10.1016/j.virol.2014.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/04/2014] [Accepted: 07/05/2014] [Indexed: 11/20/2022]
Abstract
A novel mycovirus tentatively assigned the name Sclerotinia sclerotiorum hypovirus 2 (SsHV2/5472) was detected in the phytopathogenic fungus Sclerotinia sclerotiorum. The genome is 14581 nucleotides (nts) long, excluding the poly (A) tail. A papain-like cysteine protease (Pro), an RNA-dependent RNA polymerase (RdRp) and a helicase (Hel) domain were detected in the polyprotein. Phylogenetic analysis based on multiple alignments of the aa sequence of the polyprotein placed it in a distinct clade from Alphahypovirus and Betahypovirus. The distinct aa sequence plus the fact that SsHV2/5472 possesses the longest reported genome for a hypovirus, suggests that SsHV2/5472 may represent a new genus in the family Hypoviridae. Eliminating SsHV2/5472 from S. sclerotiorum significantly increased the virulence of the protoplast virus-free derivative 5472-P5, although SsHV/5472-containing isolates showed significant variation in their virulence. In addition, membrane-bound vesicles (25-50 nm) were observed in ultrathin mycelial sections of SsHV2/5472 containing isolates but not in SsHV2/5472-free isolate.
Collapse
|
45
|
Zhang R, Liu S, Chiba S, Kondo H, Kanematsu S, Suzuki N. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses. Front Microbiol 2014; 5:360. [PMID: 25101066 PMCID: PMC4103508 DOI: 10.3389/fmicb.2014.00360] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 01/03/2023] Open
Abstract
Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10) of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1). A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A) tail. The genome possesses two non-overlapping open reading frames (ORFs): a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5′-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1). Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1 and FgV1.
Collapse
Affiliation(s)
- Rui Zhang
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Shengxue Liu
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Sotaro Chiba
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Hideki Kondo
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| | - Satoko Kanematsu
- Apple Research Division, National Institute of Fruit Tree Science, National Agricultural Research Organization (NARO) Morioka, Iwate, Japan
| | - Nobuhiro Suzuki
- Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University Kurashiki, Okayama, Japan
| |
Collapse
|
46
|
Wang L, Jiang J, Wang Y, Hong N, Zhang F, Xu W, Wang G. Hypovirulence of the phytopathogenic fungus Botryosphaeria dothidea: association with a coinfecting chrysovirus and a partitivirus. J Virol 2014; 88:7517-27. [PMID: 24760881 PMCID: PMC4054428 DOI: 10.1128/jvi.00538-14] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Botryosphaeria dothidea is an important pathogenic fungus causing fruit rot, leaf and stem ring spots and dieback, stem canker, stem death or stool mortality, and decline of pear trees. Seven double-stranded RNAs (dsRNAs; dsRNAs 1 to 7 with sizes of 3,654, 2,773, 2,597, 2,574, 1,823, 1,623, and 511 bp, respectively) were identified in an isolate of B. dothidea exhibiting attenuated growth and virulence and a sectoring phenotype. Characterization of the dsRNAs revealed that they belong to two dsRNA mycoviruses. The four largest dsRNAs (dsRNAs 1 to 4) are the genomic components of a novel member of the family Chrysoviridae (tentatively designated Botryosphaeria dothidea chrysovirus 1 [BdCV1]), a view supported by the morphology of the virions and phylogenetic analysis of the putative RNA-dependent RNA polymerases (RdRps). Two other dsRNAs (dsRNAs 5 and 6) are the genomic components of a novel member of the family Partitiviridae (tentatively designated Botryosphaeria dothidea partitivirus 1 [BdPV1]), which is placed in a clade distinct from other established partitivirus genera on the basis of the phylogenetic analysis of its RdRp. The smallest dsRNA, dsRNA7, seems to be a noncoding satellite RNA of BdPV1 on the basis of the conservation of its terminal sequences in BdPV1 genomic segments and its cosegregation with BdPV1 after horizontal transmission. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. IMPORTANCE Our studies identified and characterized two novel mycoviruses, Botryosphaeria dothidea chrysovirus 1 (BdCV1) and Botryosphaeria dothidea partitivirus 1 (BdPV1), associated with the hypovirulence of an important fungus pathogenic to fruit trees. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. BdCV1 appears to be a good candidate for the biological control of the serious disease induced by B. dothidea. Additionally, BdPV1 is placed in a clade distinct from the established genera. The BdCV1 capsid has two major structural proteins, and the capsid is distinct from that made up by a single polypeptide of the typical chrysoviruses. BdPV1 is the second partitivirus in which the putative capsid protein shares no significant identity with any mycovirus protein. A small accompanying dsRNA that is presumed to be a noncoding satellite RNA of BdPV1 is the first of its kind reported for a partitivirus.
Collapse
Affiliation(s)
- LiPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - JingJing Jiang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - YanFen Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - Fangpeng Zhang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - WenXing Xu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| | - GuoPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, People's Republic of China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, People's Republic of China Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
47
|
Peyambari M, Habibi MK, Fotouhifar KB, Dizadji A, Roossinck MJ. Molecular Characterization of a Novel Putative Partitivirus Infecting Cytospora sacchari, a Plant Pathogenic Fungus. THE PLANT PATHOLOGY JOURNAL 2014; 30:151-8. [PMID: 25288997 PMCID: PMC4174853 DOI: 10.5423/ppj.oa.01.2014.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 06/01/2023]
Abstract
Three double-stranded RNAs (dsRNAs), approximately 1.85, 1.65 and 1.27 kb in size, were detected in an isolate of Cytospora sacchari from Iran. Partial nucleotide sequence revealed a 1,284 bp segment containing one ORF that potentially encodes a 405 aa protein. This protein contains conserved motifs related to RNA dependent RNA polymerases (RdRp) that showed similarity to RdRps of partitiviruses. The results indicate that these dsRNAs represent a novel Partitivirus that we tentatively designate Cytospora sacchari partitivirus (CsPV). Treatment of the fungal strain by cyclohexamide and also hyphal tip culture had no effect on removing the putative virus. Phylogenetic analysis of putative RdRp of CsPV and other partitiviruses places CsPV as a member of the genus Partitivirus in the family Partitiviridae, and clustering with Aspergillus ochraceous virus 1.
Collapse
Affiliation(s)
- Mahtab Peyambari
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mina Koohi Habibi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil-Berdi Fotouhifar
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Akbar Dizadji
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Marilyn J. Roossinck
- The Huck Institutes of the Life Sciences, Center for Infectious Disease Dynamics, Millennium Science Complex, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
48
|
Koloniuk I, El-Habbak MH, Petrzik K, Ghabrial SA. Complete genome sequence of a novel hypovirus infecting Phomopsis longicolla. Arch Virol 2014; 159:1861-3. [PMID: 24473711 DOI: 10.1007/s00705-014-1992-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
The complete nucleotide sequence and genome organization of a hypovirus from the isolate ME711 of Phomopsis longicolla was determined and compared to sequences of members of the family Hypoviridae. The genome of the hypovirus, tentatively named Phomopsis longicolla hypovirus 1 (PlHV1-ME711), was determined to be 9760 nucleotides long, excluding the 3' poly (A) tail. The genome contains a single large open reading frame (ORF) encoding a polyprotein designated as P307. Its genomic organization is typical of members of the proposed genus Betahypovirus (Yaegashi et al. in Virus Res 165:143-50, 2012).
Collapse
Affiliation(s)
- Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 370 05, Ceske Budejovice, Czech Republic,
| | | | | | | |
Collapse
|
49
|
Suzuki N. [Cryphonectria parasitica as a host of fungal viruses: a tool useful to unravel the mycovirus world]. Uirusu 2014; 64:11-24. [PMID: 25765976 DOI: 10.2222/jsv.64.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There appear to be over a million of fungal species including those that have been unidentified and unreported, where a variety of viruses make a world as well. Studies on a very small number of them conducted during the last two decades demonstrated the infectivity of fungal viruses that had previously been assumed to be inheritable, indigenus and non-infectious. Also, great technical advances were achieved. The chest blight fungus (Cryphonectria parasitica), a phytopathogenic ascomycetous fungus, has emerged as a model filamentous fungus for fungal virology. The genome sequence with annotations, albeit not thorough, many useful research tools, and gene manipulation technologies are available for this fungus. Importantly, C. parasitica can support replication of homologous viruses naturally infecting it, in addition to heterologous viruses infecting another plant pathogenic fungus, Rosellinia necatrix taxonomically belonging to a different order. In this article, I overview general properties of fungal viruses and advantages of the chestnut blight fungus as a mycovirus host. Furthermore, I introduce two recent studies carried out using this fungal host:''Defective interfering RNA and RNA silencing that regulate the replication of a partitivirus'' and'' RNA silencing and RNA recombination''.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Agrivirology Laboratory, Group of Plant/Microbe Interactions, Institute of Plant Science and Resources, Okayama University
| |
Collapse
|
50
|
Xie J, Jiang D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:45-68. [PMID: 25001452 DOI: 10.1146/annurev-phyto-102313-050222] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mycoviruses are viruses that infect fungi. A growing number of novel mycoviruses have expanded our knowledge of virology, particularly in taxonomy, ecology, and evolution. Recent progress in the study of mycoviruses has comprehensively improved our understanding of the properties of mycoviruses and has strengthened our confidence to explore hypovirulence-associated mycoviruses that control crop diseases. In this review, the advantages of using hypovirulence-associated mycoviruses to control crop diseases are discussed, and, as an example, the potential for Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) to control the stem rot of rapeseed (Brassica napus) is also introduced. Fungal vegetative incompatibility is likely to be the key factor that limits the wide utilization of mycoviruses to control crop diseases; however, there are suggested strategies for resolving this problem.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China;
| | | |
Collapse
|