1
|
Murphy BG, Castillo D, Cook S, Eckstrand C, Evans S, Sparger E, Grant CK. The Late Asymptomatic and Terminal Immunodeficiency Phases in Experimentally FIV-Infected Cats-A Long-Term Study. Viruses 2023; 15:1775. [PMID: 37632117 PMCID: PMC10457906 DOI: 10.3390/v15081775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus in the family Retroviridae that infects domestic cats resulting in an immunodeficiency disease featuring a progressive and profound decline in multiple sets of peripheral lymphocytes. Despite compelling evidence of FIV-associated immunopathology, there are conflicting data concerning the clinical effects of FIV infection on host morbidity and mortality. To explore FIV-associated immunopathogenesis and clinical disease, we experimentally inoculated a cohort of four specific pathogen-free kittens with a biological isolate of FIV clade C and continuously monitored these animals along with two uninfected control animals for more than thirteen years from the time of inoculation to the humane euthanasia endpoint. Here, we report the results obtained during the late asymptomatic and terminal phases of FIV infection in this group of experimentally FIV-infected cats.
Collapse
Affiliation(s)
- Brian G. Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA;
| | - Diego Castillo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA;
| | - Sarah Cook
- Specialty VetPath, 3450 16th Avenue W, Suite #303, Seattle, WA 98119, USA;
| | - Christina Eckstrand
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7034, USA;
| | - Samantha Evans
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Ellen Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA;
| | - Chris K. Grant
- Custom Monoclonals International, 813 Harbor Boulevard, West Sacramento, CA 95691, USA;
| |
Collapse
|
2
|
An RNA-Directed Gene Editing Strategy for Attenuating the Infectious Potential of Feline Immunodeficiency Virus-Infected Cells: A Proof of Concept. Viruses 2020; 12:v12050511. [PMID: 32380756 PMCID: PMC7291242 DOI: 10.3390/v12050511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022] Open
Abstract
Modern antiretroviral therapy for immunodeficiency viruses, although remarkably effective in controlling viral transcription, and overt virus-associated morbidity, has failed to absolutely eradicate retroviruses from their infected hosts as a result of proviral integration in long-lived reservoir cells. Immunodeficiency virus-infected patients are therefore consigned to lifelong antiviral therapy as a means to control viremia, viral transmission, and infection-associated morbidity. Unfortunately, lifelong antiviral therapies can be difficult for patients to continuously maintain and may be associated with therapy-specific morbidities. Patient advocates have argued for new methods to achieve retroviral eradication. As a proof-of-concept study, a lentivirus-delivered RNA-directed gene editing strategy was utilized in a series of in vitro experiments in an attempt to attenuate the feline immunodeficiency virus (FIV) proviral load, viral transcription, and production of infectious virions. We found that a feline T lymphocyte cell line (MCH5-4) treated with an FIV-specific clustered regularly interspersed short palindromic repeats (CRISPR)-associated protein 9 (Cas9) gene editing tool resulted in a reduction of cell-free viral RNA relative to control cells. Decreased infectious potential was demonstrated in a two-step FIV infection study-naïve MCH5-4 cells infected with cell-free FIV harvested from FIV-infected and CRISPR lentivirus-treated cells had less integrated proviral DNA than control cells. This study represents the initial steps towards the development of an effective method of proviral eradication in an immunodeficiency virus-infected host.
Collapse
|
3
|
Murphy BG, Eckstrand C, Castillo D, Poon A, Liepnieks M, Harmon K, Moore P. Multiple, Independent T Cell Lymphomas Arising in an Experimentally FIV-Infected Cat during the Terminal Stage of Infection. Viruses 2018; 10:v10060280. [PMID: 29794987 PMCID: PMC6024646 DOI: 10.3390/v10060280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Our laboratory has serially reported on the virologic and immunopathologic features of a cohort of experimental feline immunodeficiency virus (FIV)-infected cats for more than eight years. At 8.09 years post infection (PI), one of these animals entered the terminal stage of infection, characterized by undulating hyperthermia, progressive anorexia, weight loss, and pancytopenia; the animal was not responsive to therapeutic interventions, necessitating euthanasia six weeks later (8.20 years PI). Subsequent analyses indicated that neoplastic lymphocytes infiltrated multiple cervical lymph nodes and a band-like region of the mucosal lamina propria within a segment of the intestine. Immunohistochemistry and T cell clonality testing determined that the nodal and intestinal lesions were independently arising from CD3 T cell lymphomas. In-situ RNA hybridization studies indicated that diffuse neoplastic lymphocytes from the cervical lymph node contained abundant viral nucleic acid, while viral nucleic acid was not detectable in lymphocytes from the intestinal lymphoma lesion. The proviral long terminal repeat (LTR) was amplified and sequenced from multiple anatomic sites, and a common clone containing a single nucleotide polymorphism was determined to be defective in response to phorbol myristate acetate (PMA)-mediated promoter activation in a reporter gene assay. This assay revealed a previously unidentified PMA response element within the FIV U3 region 3’ to the TATA box. The possible implications of these results on FIV-lymphoma pathogenesis are discussed.
Collapse
Affiliation(s)
- Brian G Murphy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA.
| | - Christina Eckstrand
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA.
| | - Diego Castillo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA.
| | - Andre Poon
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA.
| | - Molly Liepnieks
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA.
| | - Kristy Harmon
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA.
| | - Peter Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616-5270, USA.
| |
Collapse
|
4
|
Nag M, De Paris K, E Fogle J. Epigenetic Modulation of CD8⁺ T Cell Function in Lentivirus Infections: A Review. Viruses 2018; 10:v10050227. [PMID: 29710792 PMCID: PMC5977220 DOI: 10.3390/v10050227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cells are critical for controlling viremia during human immunodeficiency virus (HIV) infection. These cells produce cytolytic factors and antiviral cytokines that eliminate virally- infected cells. During the chronic phase of HIV infection, CD8+ T cells progressively lose their proliferative capacity and antiviral functions. These dysfunctional cells are unable to clear the productively infected and reactivated cells, representing a roadblock in HIV cure. Therefore, mechanisms to understand CD8+ T cell dysfunction and strategies to boost CD8+ T cell function need to be investigated. Using the feline immunodeficiency virus (FIV) model for lentiviral persistence, we have demonstrated that CD8+ T cells exhibit epigenetic changes such as DNA demethylation during the course of infection as compared to uninfected cats. We have also demonstrated that lentivirus-activated CD4+CD25+ T regulatory cells induce forkhead box P3 (Foxp3) expression in virus-specific CD8+ T cell targets, which binds the interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ promoters in these CD8+ T cells. Finally, we have reported that epigenetic modulation reduces Foxp3 binding to these promoter regions. This review compares and contrasts our current understanding of CD8+ T cell epigenetics and mechanisms of lymphocyte suppression during the course of lentiviral infection for two animal models, FIV and simian immunodeficiency virus (SIV).
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
5
|
Eckstrand CD, Sparger EE, Murphy BG. Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 2017; 98:1985-1996. [DOI: 10.1099/jgv.0.000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chrissy D. Eckstrand
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, 4003 Animal Disease Biotechnology Facility, Washington State University, Pullman, WA 99163, USA
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 3115 Tupper Hall, Davis, CA 95616, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Peripheral and central immune cell reservoirs in tissues from asymptomatic cats chronically infected with feline immunodeficiency virus. PLoS One 2017; 12:e0175327. [PMID: 28384338 PMCID: PMC5383277 DOI: 10.1371/journal.pone.0175327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/23/2017] [Indexed: 11/21/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection in cats results in life-long viral persistence and progressive immunopathology. We have previously described a cohort of experimentally infected cats demonstrating a progressive decline of peripheral blood CD4+ T-cell over six years in the face of apparent peripheral viral latency. More recently we reported findings from this same cohort that revealed popliteal lymph node tissue as sites for ongoing viral replication suggesting that tissue reservoirs are important in FIV immunopathogenesis during the late asymptomatic phase of infection. Results reported herein characterize important tissue reservoirs of active viral replication during the late asymptomatic phase by examining biopsied specimens of spleen, mesenteric lymph node (MLN), and intestine from FIV-infected and uninfected control cats. Peripheral blood collected coincident with harvest of tissues demonstrated severe CD4+ T-cell depletion, undetectable plasma viral gag RNA and rarely detectable peripheral blood mononuclear cell (PBMC)-associated viral RNA (vRNA) by real-time PCR. However, vRNA was detectable in all three tissue sites from three of four FIV-infected cats despite the absence of detectable vRNA in plasma. A novel in situ hybridization assay identified B cell lymphoid follicular domains as microanatomical foci of ongoing FIV replication. Additionally, we demonstrated that CD4+ leukocyte depletion in tissues, and CD4+ and CD21+ leukocytes as important cellular reservoirs of ongoing replication. These findings revealed that tissue reservoirs support foci of ongoing viral replication, in spite of highly restricted viral replication in blood. Lentiviral eradication strategies will need address tissue viral reservoirs.
Collapse
|
7
|
Denton PW, Søgaard OS, Tolstrup M. Using animal models to overcome temporal, spatial and combinatorial challenges in HIV persistence research. J Transl Med 2016; 14:44. [PMID: 26861779 PMCID: PMC4746773 DOI: 10.1186/s12967-016-0807-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Research challenges associated with understanding HIV persistence during antiretroviral therapy can be categorized as temporal, spatial and combinatorial. Temporal research challenges relate to the timing of events during establishment and maintenance of HIV persistence. Spatial research challenges regard the anatomical locations and cell subsets that harbor persistent HIV. Combinatorial research challenges pertain to the order of administration, timing of administration and specific combinations of compounds to be administered during HIV eradication therapy. Overcoming these challenges will improve our understanding of HIV persistence and move the field closer to achieving eradication of persistent HIV. Given that humanized mice and non-human primate HIV models permit rigorous control of experimental conditions, these models have been used extensively as in vivo research platforms for directly addressing these research challenges. The aim of this manuscript is to provide a comprehensive review of these recent translational advances made in animal models of HIV persistence.
Collapse
Affiliation(s)
- Paul W Denton
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark. .,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark.
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| |
Collapse
|
8
|
Eckstrand CD, Hillman C, Smith AL, Sparger EE, Murphy BG. Viral Reservoirs in Lymph Nodes of FIV-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase. PLoS One 2016; 11:e0146285. [PMID: 26741651 PMCID: PMC4704817 DOI: 10.1371/journal.pone.0146285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Examination of a cohort of cats experimentally infected with feline immunodeficiency virus (FIV) for 5.75 years revealed detectable proviral DNA in peripheral blood mononuclear cells (PBMCs) harvested during the asymptomatic phase, undetectable plasma viral RNA (FIV gag), and rarely detectable cell-associated viral RNA. Despite apparent viral latency in peripheral CD4+ T cells, circulating CD4+ T cell numbers progressively declined in progressor animals. The aim of this study was to explore this dichotomy of peripheral blood viral latency in the face of progressive immunopathology. The viral replication status, cellular immunophenotypes, and histopathologic features were compared between popliteal lymph nodes (PLNs) and peripheral blood. Also, we identified and further characterized one of the FIV-infected cats identified as a long-term non-progressor (LTNP). Results PLN-derived leukocytes from FIV-infected cats during the chronic asymptomatic phase demonstrated active viral gag transcription and FIV protein translation as determined by real-time RT-PCR, Western blot and in situ immunohistochemistry, whereas viral RNA in blood leukocytes was either undetectable or intermittently detectable and viral protein was not detected. Active transcription of viral RNA was detectable in PLN-derived CD4+ and CD21+ leukocytes. Replication competent provirus was reactivated ex vivo from PLN-derived leukocytes from three of four FIV-infected cats. Progressor cats showed a persistent and dramatically decreased proportion and absolute count of CD4+ T cells in blood, and a decreased proportion of CD4+ T cells in PLNs. A single long-term non-progressor (LTNP) cat persistently demonstrated an absolute peripheral blood CD4+ T cell count indistinguishable from uninfected animals, a lower proviral load in unfractionated blood and PLN leukocytes, and very low amounts of viral RNA in the PLN. Conclusion Collectively our data indicates that PLNs harbor important reservoirs of ongoing viral replication during the asymptomatic phase of infection, in spite of undetectable viral activity in peripheral blood. A thorough understanding of tissue-based lentiviral reservoirs is fundamental to medical interventions to eliminate virus or prolong the asymptomatic phase of FIV infection.
Collapse
Affiliation(s)
- C D Eckstrand
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - C Hillman
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - A L Smith
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - E E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - B G Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
9
|
Epigenetic analysis of HIV-1 proviral genomes from infected individuals: predominance of unmethylated CpG's. Virology 2013; 449:181-9. [PMID: 24418551 DOI: 10.1016/j.virol.2013.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 11/06/2013] [Indexed: 12/30/2022]
Abstract
Efforts to cure HIV-1 infections aim at eliminating proviral DNA. Integrated DNA from various viruses often becomes methylated de novo and transcriptionally inactivated. We therefore investigated CpG methylation profiles of 55 of 94 CpG's (58.5%) in HIV-1 proviral genomes including ten CpG's in each LTR and additional CpG's in portions of gag, env, nef, rev, and tat genes. We analyzed 33 DNA samples from PBMC's of 23 subjects representing a broad spectrum of HIV-1 disease. In 22 of 23 HIV-1-infected individuals, there were only unmethylated CpG's regardless of infection status. In one long term nonprogressor, however, methylation of proviral DNA varied between 0 and 75% over an 11-year period although the CD4+ counts remained stable. Hence levels of proviral DNA methylation can fluctuate. The preponderance of unmethylated CpG's suggests that proviral methylation is not a major factor in regulating HIV-1 proviral activity in PBMC's. Unmethylated CpG's may play a role in HIV-1 immunopathogenesis.
Collapse
|
10
|
McDonnel SJ, Sparger EE, Murphy BG. Feline immunodeficiency virus latency. Retrovirology 2013; 10:69. [PMID: 23829177 PMCID: PMC3707804 DOI: 10.1186/1742-4690-10-69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022] Open
Abstract
Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most recent and least characterized. However, several aspects of this model make it attractive for latency research, and it may be complementary to other model systems. This article reviews what is known about FIV latency and chronic FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of this model in future research aimed at lentiviral eradication.
Collapse
Affiliation(s)
- Samantha J McDonnel
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA.
| | | | | |
Collapse
|