Iszatt JJ, Larcombe AN, Garratt LW, Stick SM, Kicic A. Lytic activity, stability, biofilm disruption capabilities, and genomic characterization of two bacteriophages active against respiratory MRSA.
J Appl Microbiol 2025;
136:lxaf081. [PMID:
40180588 DOI:
10.1093/jambio/lxaf081]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 04/10/2025] [Indexed: 04/05/2025]
Abstract
AIMS
This study aimed to characterize bacteriophages for potential therapeutic use against Staphylococcus aureus, focusing on clinical respiratory isolates of methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) strains. Specifically, it sought to evaluate phage lytic activity, host range, stability, biofilm disruption capabilities, and overall safety for therapeutic use.
METHODS AND RESULTS
Novel phages, Koomba kaat 1 and Biyabeda mokiny 1, were identified and characterized using microbiological assays and bioinformatics. They exhibited lytic activity against clinical MSSA and MRSA isolates, disrupted biofilms from airway isolates, remained stable for at least one year in storage, and could be aerosolized without significant reductions in activity. Bioinformatic tools were used to assess safety, lifecycle, virulence, and prophage contamination when grown using their original isolation host. Receptor binding proteins within their genomes were also predicted, providing insight into their mechanisms of action. Both phages demonstrated strong efficacy against the clinical isolates tested and demonstrated robust stability under storage and delivery conditions.
CONCLUSIONS
Koomba kaat 1 and Biyabeda mokiny 1 are promising candidates for phage therapy. Their efficacy against clinical S. aureus isolates, ability to break down biofilm, and stability for airway implementation, positions them as valuable tools for addressing persistent airway infections caused by S. aureus.
Collapse