1
|
Bandoo RA, Kraberger S, Varsani A. Two Novel Geminiviruses Identified in Bees ( Apis mellifera and Nomia sp.). Viruses 2024; 16:602. [PMID: 38675943 PMCID: PMC11053556 DOI: 10.3390/v16040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Members of the Geminviridae family are circular single-stranded DNA plant-infecting viruses, some of which impact global food production. Geminiviruses are vectored by sap-feeding insects such as leafhoppers, treehoppers, aphids, and whiteflies. Additionally, geminivirus sequences have also been identified in other insects such as dragonflies, mosquitoes, and stingless bees. As part of a viral metagenomics study on honeybees and solitary bees (Nomia sp.), two geminivirus genomes were identified. These represent a novel citlodavirus (from honeybees collected from Westmoreland, Jamaica) and a mastrevirus-like genome (from a solitary bee collected from Tempe, Arizona, USA). The novel honeybee-derived citlodavirus genome shares ~61 to 69% genome-wide nucleotide pairwise identity with other citlodavirus genome sequences and is most closely related to the passion fruit chlorotic mottle virus identified in Brazil. Whereas the novel solitary bee-derived mastrevirus-like genome shares ~55 to 61% genome-wide nucleotide identity with other mastreviruses and is most closely related to tobacco yellow dwarf virus identified in Australia, based on pairwise identity scores of the full genome, replication-associated protein, and capsid protein sequences. Previously, two geminiviruses in the Begomovirus genus were identified in samples of stingless bee (Trigona spp.) samples. Here, we identify viruses that represent two new species of geminiviruses from a honeybee and a solitary bee, which continues to demonstrate that plant pollinators can be utilized for the identification of plant-infecting DNA viruses in ecosystems.
Collapse
Affiliation(s)
- Rohan Antonio Bandoo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Iqbal Z, Shafiq M, Briddon RW. Cotton leaf curl Multan betasatellite impaired ToLCNDV ability to maintain cotton leaf curl Multan alphasatellite. BRAZ J BIOL 2024; 84:e260922. [DOI: 10.1590/1519-6984.260922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Alphasatellites (family Alphasatellitidae) are circular, single-stranded (ss) DNA molecules of ~1350 nucleotide in size that have been characterized in both the Old and New Worlds. Alphasatellites have inherent ability to self-replicate, which is accomplished by a single protein, replication-associated protein (Rep). Although the precise function of alphasatellite is yet unknown, and these consider dispensable for infectivity, however, their Rep protein functions as a suppressor of host defence. While alphasatellites are most frequently associated with begomoviruses, particularly with monopartite than bipartite begomoviruses, they have recently been found associated with mastreviruses. The in planta maintenance of alphasatellites by helper geminivirus is still an enigma, with no available study on the topic. This study aimed to investigate whether a widely distributed bipartite begomovirus, tomato leaf curl New Delhi virus (ToLCNDV), can maintain cotton leaf curl Multan alphasatellite (CLCuMuA) in the presence or absence of cotton leaf curl Multan betasatellite (CLCuMuB). The findings of this study demonstrated that ToLCNDV or its DNA A could maintain CLCuMuA in Nicotiana benthamiana plants. However, the presence of CLCuMuB interferes with the maintenance of CLCuMuA, and mutations in the CP of ToLCNDV further reduces it. Our study highlighted that the maintenance of alphasatellites is impaired in the presence of a betasatellite by ToLCNDV. Further investigation is needed to unravel all the interactions between a helper virus and an alphasatellites.
Collapse
Affiliation(s)
- Z. Iqbal
- National Institute for Biotechnology and Genetic Engineering, Pakistan; King Faisal University, Saudi Arabia
| | - M. Shafiq
- National Institute for Biotechnology and Genetic Engineering, Pakistan; University of Sialkot, Pakistan
| | - R. W. Briddon
- National Institute for Biotechnology and Genetic Engineering, Pakistan
| |
Collapse
|
3
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
4
|
Effects of an alphasatellite on life cycle of the nanovirus Faba bean necrotic yellows virus. J Virol 2021; 96:e0138821. [PMID: 34818072 DOI: 10.1128/jvi.01388-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (hereafter named SCSA 1) on various important traits of faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum, including disease symptoms, viral accumulation and transmission. The results indicate that SCSA 1 does not affect the symptom severity nor the overall FBNYV accumulation in V. faba, but changes the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to simple increase of the viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. Importance Alphasatellites are circular single stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruse, the two ssDNA plant infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both plant and vector. We also confirm that while within-plant virus load and symptom are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load, but significantly increases virus transmission rate, so may confer a possible evolutionary advantage for the helper virus.
Collapse
|
5
|
François S, Antoine-Lorquin A, Kulikowski M, Frayssinet M, Filloux D, Fernandez E, Roumagnac P, Froissart R, Ogliastro M. Characterisation of the Viral Community Associated with the Alfalfa Weevil ( Hypera postica) and Its Host Plant, Alfalfa ( Medicago sativa). Viruses 2021; 13:791. [PMID: 33925168 PMCID: PMC8145008 DOI: 10.3390/v13050791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.
Collapse
Affiliation(s)
- Sarah François
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, South Park Road, Oxford OX1 3SY, UK
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Aymeric Antoine-Lorquin
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Maximilien Kulikowski
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Marie Frayssinet
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090 Montpellier, France
| | - Rémy Froissart
- MIVEGEC Infectious and Vector Diseases: Ecology, Genetics, Evolution and Control, University of Montpellier, CNRS, IRD, 34394 Montpellier, France;
| | - Mylène Ogliastro
- DGIMI Diversity, Genomes and Microorganisms–Insects Interactions, University of Montpellier, INRAE, 34095 Montpellier, France; (A.A.-L.); (M.K.); (M.F.)
| |
Collapse
|
6
|
Claverie S, Varsani A, Hoareau M, Filloux D, Roumagnac P, Martin DP, Lefeuvre P, Lett JM. Sorghum mastrevirus-associated alphasatellites: new geminialphasatellites associated with an African streak mastrevirus infecting wild Poaceae plants on Reunion Island. Arch Virol 2020; 165:1925-1928. [PMID: 32506147 DOI: 10.1007/s00705-020-04685-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/26/2020] [Indexed: 11/30/2022]
Abstract
Nine complete nucleotide sequences of geminialphasatellites (subfamily Geminialphasatellitinae, family Alphasatellitidae) recovered from the wild Poaceae Sorghum arundinaceum collected in Reunion are described and analyzed. While the helper geminivirus was identified as an isolate of maize streak virus (genus Mastrevirus, family Geminiviridae), the geminialphasatellite genomes were most closely related to, and shared ~63% identity with, clecrusatellites. Even though the geminialphasatellite molecules lack an adenine rich-region, they have the typical size of geminialphasatellites, encode a replication-associated protein in the virion sense, and have probable stem-loop structures at their virion-strand origins of replication. According to the proposed geminialphasatellite species and genus demarcation thresholds (88% and 70% nucleotide identity, respectively), the genomes identified here represent a new species (within a new genus) for which we propose the name "Sorghum mastrevirus-associated alphasatellite" (genus "Sorgasalphasatellite").
Collapse
Affiliation(s)
- Sohini Claverie
- CIRAD, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France.,Université de La Réunion, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | | | - Denis Filloux
- CIRAD, UMR BGPI, 34398, Montpellier, France.,BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, 34398, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, 34398, Montpellier, France.,BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, 34398, Montpellier, France
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | | | | |
Collapse
|
7
|
Villamor DEV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE. High Throughput Sequencing For Plant Virus Detection and Discovery. PHYTOPATHOLOGY 2019; 109:716-725. [PMID: 30801236 DOI: 10.1094/phyto-07-18-0257-rvw] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Over the last decade, virologists have discovered an unprecedented number of viruses using high throughput sequencing (HTS), which led to the advancement of our knowledge on the diversity of viruses in nature, particularly unraveling the virome of many agricultural crops. However, these new virus discoveries have often widened the gaps in our understanding of virus biology; the forefront of which is the actual role of a new virus in disease, if any. Yet, when used critically in etiological studies, HTS is a powerful tool to establish disease causality between the virus and its host. Conversely, with globalization, movement of plant material is increasingly more common and often a point of dispute between countries. HTS could potentially resolve these issues given its capacity to detect and discover. Although many pipelines are available for plant virus discovery, all share a common backbone. A description of the process of plant virus detection and discovery from HTS data are presented, providing a summary of the different pipelines available for scientists' utility in their research.
Collapse
Affiliation(s)
- D E V Villamor
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - T Ho
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - M Al Rwahnih
- 2 Department of Plant Pathology, University of California, Davis 95616; and
| | - R R Martin
- 3 Horticulture Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
8
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
9
|
Hasanvand V, Kamali M, Heydarnejad J, Massumi H, Kvarnheden A, Varsani A. Identification of a new turncurtovirus in the leafhopper Circulifer haematoceps and the host plant species Sesamum indicum. Virus Genes 2018; 54:840-845. [DOI: 10.1007/s11262-018-1604-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
|
10
|
Burke GR, Simmonds TJ, Sharanowski BJ, Geib SM. Rapid Viral Symbiogenesis via Changes in Parasitoid Wasp Genome Architecture. Mol Biol Evol 2018; 35:2463-2474. [DOI: 10.1093/molbev/msy148] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA
| | | | | | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, USDA-ARS Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI
| |
Collapse
|
11
|
From Spatial Metagenomics to Molecular Characterization of Plant Viruses: A Geminivirus Case Study. Adv Virus Res 2018; 101:55-83. [PMID: 29908594 DOI: 10.1016/bs.aivir.2018.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of plant viruses that are known likely remains only a vanishingly small fraction of all extant plant virus species. Consequently, the distribution and population dynamics of plant viruses within even the best-studied ecosystems have only ever been studied for small groups of virus species. Even for the best studied of these groups very little is known about virus diversity at spatial scales ranging from an individual host, through individual local host populations to global host populations. To date, metagenomics studies that have assessed the collective or metagenomes of viruses at the ecosystem scale have revealed many previously unrecognized viral species. More recently, novel georeferenced metagenomics approaches have been devised that can precisely link individual sequence reads to both the plant hosts from which they were obtained, and the spatial arrangements of these hosts. Besides illuminating the diversity and the distribution of plant viruses at the ecosystem scale, application of these "geometagenomics" approaches has enabled the direct testing of hypotheses relating to the impacts of host diversity, host spatial variations, and environmental conditions on plant virus diversity and prevalence. To exemplify how such top-down approaches can provide a far deeper understanding of host-virus associations, we provide a case-study focusing on geminiviruses within two complex ecosystems containing both cultivated and uncultivated areas. Geminiviruses are a highly relevant model for studying the evolutionary and ecological aspects of viral emergence because the family Geminiviridae includes many of the most important crop pathogens that have emerged over the past century. In addition to revealing unprecedented degrees of geminivirus diversity within the analyzed ecosystems, the geometagenomics-based approach enabled the focused in-depth analysis of the complex evolutionary dynamics of some of the highly divergent geminivirus species that were discovered.
Collapse
|
12
|
Abbas Q, Amin I, Mansoor S, Shafiq M, Wassenegger M, Briddon RW. The Rep proteins encoded by alphasatellites restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana. Virusdisease 2017; 30:101-105. [PMID: 31143837 DOI: 10.1007/s13337-017-0413-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022] Open
Abstract
Alphasatellites are non-essential satellite-like components associated with geminiviruses. The precise selective advantage to a geminivirus infection of an alphasatellite remains unclear. The ability of the cotton leaf curl Multan alphasatellite (CLCuMuA)-encoded replication-associated protein (Rep) to suppress TGS was investigated by using Nicotiana benthamiana line 16-TGS (16-TGS) harbouring a transcriptionally silenced green fluorescent protein (GFP) transgene. Inoculation of 16-TGS plants with a recombinant Potato virus X (PVX) vector carrying CLCuMuA Rep resulted in restoration of GFP expression. Northern blot analysis confirmed that the observed GFP fluorescence was associated with GFP mRNA accumulation. Inoculation with PVX vectors harbouring a further six Rep proteins, encoded by genetically distinct alphasatellites, were similarly shown to result in 16-TGS plants with restored GFP expression. These results indicate that the alphasatellite-encoded Rep can restore the expression of a transcriptionally silenced GFP transgene in N. benthamiana, indicating that alphasatellites are involved in overcoming host defence.
Collapse
Affiliation(s)
- Qamar Abbas
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.,RLP-Agroscience, AlPlanta - Institute for Plant Research, Neustadt, Germany
| | - Imran Amin
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Shafiq
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.,RLP-Agroscience, AlPlanta - Institute for Plant Research, Neustadt, Germany.,3Present Address: Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Rob W Briddon
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
13
|
Molecular characterization of faba bean necrotic yellows viruses in Tunisia. Arch Virol 2017; 163:687-694. [PMID: 29147784 DOI: 10.1007/s00705-017-3651-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Faba bean necrotic yellows virus (FBNYV) (genus Nanovirus; family Nanoviridae) has a genome comprising eight individually encapsidated circular single-stranded DNA components. It has frequently been found infecting faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) in association with satellite molecules (alphasatellites). Genome sequences of FBNYV from Azerbaijan, Egypt, Iran, Morocco, Spain and Syria have been determined previously and we now report the first five genome sequences of FBNYV and associated alphasatellites from faba bean sampled in Tunisia. In addition, we have determined the genome sequences of two additional FBNYV isolates from chickpea plants sampled in Syria and Iran. All individual FBNYV genome component sequences that were determined here share > 84% nucleotide sequence identity with FBNYV sequences available in public databases, with the DNA-M component displaying the highest degree of diversity. As with other studied nanoviruses, recombination and genome component reassortment occurs frequently both between FBNYV genomes and between genomes of nanoviruses belonging to other species.
Collapse
|
14
|
Fontenele RS, Alves-Freitas DMT, Silva PIT, Foresti J, Silva PR, Godinho MT, Varsani A, Ribeiro SG. Discovery of the first maize-infecting mastrevirus in the Americas using a vector-enabled metagenomics approach. Arch Virol 2017; 163:263-267. [PMID: 28956174 DOI: 10.1007/s00705-017-3571-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/04/2017] [Indexed: 01/18/2023]
Abstract
The genus Mastrevirus (family Geminiviridae) is composed of single-stranded DNA viruses that infect mono- and dicotyledonous plants and are transmitted by leafhoppers. In South America, there have been only two previous reports of mastreviruses, both identified in sweet potatoes (from Peru and Uruguay). As part of a general viral surveillance program, we used a vector-enabled metagenomics (VEM) approach and sampled leafhoppers (Dalbulus maidis) in Itumbiara (State of Goiás), Brazil. High-throughput sequencing of viral DNA purified from the leafhopper sample revealed mastrevirus-like contigs. Using a set of abutting primers, a 2746-nt circular genome was recovered. The circular genome has a typical mastrevirus genome organization and shares <63% pairwise identity with other mastrevirus isolates from around the world. Therefore, the new mastrevirus was tentatively named "maize striate mosaic virus". Seventeen maize leaf samples were collected in the same field as the leafhoppers, and ten samples were found to be positive for this mastrevirus. Furthermore, the ten genomes recovered from the maize samples share >99% pairwise identity with the one from the leafhopper. This is the first report of a maize-infecting mastrevirus in the Americas, the first identified in a non-vegetatively propagated mastrevirus host in South America, and the first mastrevirus to be identified in Brazil.
Collapse
Affiliation(s)
- Rafaela S Fontenele
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil.,The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ, USA, 85287
| | | | - Pedro I T Silva
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Josemar Foresti
- Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brasil
| | - Paulo R Silva
- Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brasil
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ, USA, 85287. .,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| | | |
Collapse
|
15
|
Boukari W, Alcalá-Briseño RI, Kraberger S, Fernandez E, Filloux D, Daugrois JH, Comstock JC, Lett JM, Martin DP, Varsani A, Roumagnac P, Polston JE, Rott PC. Occurrence of a novel mastrevirus in sugarcane germplasm collections in Florida, Guadeloupe and Réunion. Virol J 2017; 14:146. [PMID: 28754134 PMCID: PMC5534050 DOI: 10.1186/s12985-017-0810-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane germplasm using stalk cuttings facilitates the spread of sugarcane-infecting viruses. METHODS A virion-associated nucleic acids (VANA)-based metagenomics approach was used to detect mastrevirus sequences in 717 sugarcane samples from Florida (USA), Guadeloupe (French West Indies), and Réunion (Mascarene Islands). Contig assembly was performed using CAP3 and sequence searches using BLASTn and BLASTx. Mastrevirus full genomes were enriched from total DNA by rolling circle amplification, cloned and sequenced. Nucleotide and amino acid sequence identities were determined using SDT v1.2. Phylogenetic analyses were conducted using MEGA6 and PHYML3. RESULTS We identified a new sugarcane-infecting mastrevirus in six plants sampled from germplasm collections in Florida and Guadeloupe. Full genome sequences were determined and analyzed for three virus isolates from Florida, and three from Guadeloupe. These six genomes share >88% genome-wide pairwise identity with one another and between 89 and 97% identity with a recently identified mastrevirus (KR150789) from a sugarcane plant sampled in China. Sequences similar to these were also identified in sugarcane plants in Réunion. CONCLUSIONS As these virus isolates share <64% genome-wide identity with all other known mastreviruses, we propose classifying them within a new mastrevirus species named Sugarcane striate virus. This is the first report of sugarcane striate virus (SCStV) in the Western Hemisphere, a virus that most likely originated in Asia. The distribution, vector, and impact of SCStV on sugarcane production remains to be determined.
Collapse
Affiliation(s)
- Wardatou Boukari
- IFAS, Everglades Research & Education Center, University of Florida, Belle Glade, FL 33430 USA
- IFAS, Plant pathology Department, University of Florida, Gainesville, FL 32611 USA
| | | | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001 USA
| | - Emmanuel Fernandez
- CIRAD-INRA-Montpellier SupAgro, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| | - Denis Filloux
- CIRAD-INRA-Montpellier SupAgro, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| | - Jean-Heinrich Daugrois
- CIRAD-INRA-Montpellier SupAgro, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| | | | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’IRAT, 97410 Saint-Pierre, Ile de la Réunion France
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Observatory, Cape Town, 7925 South Africa
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001 USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, 7001 South Africa
| | - Philippe Roumagnac
- CIRAD-INRA-Montpellier SupAgro, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| | - Jane E. Polston
- IFAS, Plant pathology Department, University of Florida, Gainesville, FL 32611 USA
| | - Philippe C. Rott
- IFAS, Everglades Research & Education Center, University of Florida, Belle Glade, FL 33430 USA
| |
Collapse
|
16
|
Kraberger S, Geering ADW, Walters M, Martin DP, Varsani A. Novel mastreviruses identified in Australian wild rice. Virus Res 2017; 238:193-197. [PMID: 28684155 DOI: 10.1016/j.virusres.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022]
Abstract
Most known mastreviruses (family Geminiviridae) infect members of the grass family, Poaceae. Although the greatest number of grass-infecting mastrevirus species have been discovered in Africa, it is apparent that the ten grass-infecting mastrevirus species that have so far only been discovered in south-east Queensland have a degree of diversity that rivals that observed in Africa. In this study, we have used a deep sequencing approach to identify two new mastrevirus species, tentatively named rice latent virus 1 and 2 (RLV 1 and 2), from two, undescribed wild rice species (Oryza AA genome group) in Cape York Peninsula, Queensland. The sequences of these new viruses had less than 70% identity with any previously identified mastrevirus, and therefore their discovery vastly expands the known diversity of monocot-infecting mastreviruses in Australia. This study also highlights the potential risks of novel crop pathogens emerging from uncultivated grass species, as the wild rice hosts are very closely related to domesticated rice.
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Matthew Walters
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
17
|
Mar TB, Mendes IR, Lau D, Fiallo-Olivé E, Navas-Castillo J, Alves MS, Murilo Zerbini F. Interaction between the New World begomovirus Euphorbia yellow mosaic virus and its associated alphasatellite: effects on infection and transmission by the whitefly Bemisia tabaci. J Gen Virol 2017; 98:1552-1562. [PMID: 28590236 DOI: 10.1099/jgv.0.000814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The majority of Old World monopartite begomoviruses (family Geminiviridae) are associated with satellite DNAs. Alphasatellites are capable of autonomous replication, but depend on the helper virus for movement, encapsidation and transmission by the insect vector. Recently, Euphorbia yellow mosaic alphasatellite (EuYMA) was found in association with Euphorbia yellow mosaic virus (EuYMV) infecting Euphorbia heterophylla plants in Brazil. The geographical range of EuYMA was assessed in a representative sampling of E. heterophylla plants collected in several states of Brazil from 2009 to 2014. Infectious clones were generated and used to assess the phenotype of viral infection in the presence or absence of the alphasatellite in tomato, E. heterophylla, Nicotiana benthamiana, Arabidopsis thaliana and Crotalaria juncea. Phenotypic differences of EuYMV infection in the presence or absence of EuYMA were observed in A. thaliana, N. benthamiana and E. heterophylla. Symptoms were more severe when EuYMV was inoculated in combination with EuYMA in N. benthamiana and E. heterophylla, and the presence of the alphasatellite was determinant for symptom development in A. thaliana. Quantification of EuYMV and EuYMA indicated that EuYMA affects the accumulation of EuYMV during infection on a host-dependent basis. Transmission assays indicated that EuYMA negatively affects the transmission of EuYMV by Bemisia tabaci MEAM1. Together, these results indicate that EuYMA is capable of modulating symptoms, viral accumulation and whitefly transmission of EuYMV, potentially interfering with virus dissemination in the field.
Collapse
Affiliation(s)
- Talita Bernardon Mar
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Igor Rodrigues Mendes
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Douglas Lau
- Embrapa Trigo, Rodovia BR-285, CP 3081, Passo Fundo, RS, 99001-970, Brazil
| | - Elvira Fiallo-Olivé
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental ''La Mayora'', 29750 Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental ''La Mayora'', 29750 Algarrobo-Costa, Málaga, Spain
| | - Murilo Siqueira Alves
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - F Murilo Zerbini
- Dep de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
18
|
Genome Sequence of Cauliflower Mosaic Virus Identified in Earwigs ( Doru luteipes) through a Metagenomic Approach. GENOME ANNOUNCEMENTS 2017; 5:5/11/e00043-17. [PMID: 28302781 PMCID: PMC5356058 DOI: 10.1128/genomea.00043-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report the first complete genome sequence of a cauliflower mosaic virus from Brazil, obtained from the gut content of the predator earwig (Doru luteipes). This virus has a genome of 8,030 nucleotides (nt) and shares 97% genome-wide identity with an isolate from Argentina.
Collapse
|
19
|
Genome Sequences of Beet curly top Iran virus, Oat dwarf virus, Turnip curly top virus, and Wheat dwarf virus Identified in Leafhoppers. GENOME ANNOUNCEMENTS 2017; 5:5/8/e01674-16. [PMID: 28232449 PMCID: PMC5323628 DOI: 10.1128/genomea.01674-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Implementation of a vector-enabled metagenomics approach resulted in the identification of various geminiviruses. We identified the genome sequences of Beet curly top Iran virus, Turnip curly top viruses, Oat dwarf viruses, the first from Iran, and Wheat dwarf virus from leafhoppers feeding on beet, parsley, pumpkin, and turnip plants.
Collapse
|
20
|
Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem. INFECTION GENETICS AND EVOLUTION 2016; 39:304-316. [PMID: 26873065 DOI: 10.1016/j.meegid.2016.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/30/2016] [Accepted: 02/07/2016] [Indexed: 11/24/2022]
Abstract
Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates.
Collapse
|
21
|
Rosario K, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Breitbart M. Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae). Viruses 2016; 8:v8020036. [PMID: 26848679 PMCID: PMC4776191 DOI: 10.3390/v8020036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 01/23/2023] Open
Abstract
Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640-750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Christian Marr
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental ''La Mayora'', Algarrobo-Costa, Málaga 29750, Spain.
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| |
Collapse
|
22
|
Dayaram A, Potter KA, Pailes R, Marinov M, Rosenstein DD, Varsani A. Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. INFECTION GENETICS AND EVOLUTION 2015; 30:278-287. [DOI: 10.1016/j.meegid.2014.12.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/17/2014] [Accepted: 12/31/2014] [Indexed: 12/16/2022]
|
23
|
Agindotan BO, Domier LL, Bradley CA. Detection and characterization of the first North American mastrevirus in switchgrass. Arch Virol 2015; 160:1313-7. [DOI: 10.1007/s00705-015-2367-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
|
24
|
Lefeuvre P, Moriones E. Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr Opin Virol 2015; 10:14-9. [DOI: 10.1016/j.coviro.2014.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
|
25
|
Candresse T, Filloux D, Muhire B, Julian C, Galzi S, Fort G, Bernardo P, Daugrois JH, Fernandez E, Martin DP, Varsani A, Roumagnac P. Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLoS One 2014; 9:e102945. [PMID: 25061967 PMCID: PMC4111361 DOI: 10.1371/journal.pone.0102945] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022] Open
Abstract
Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs) and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non-intercepted virus pathogens passing through plant quarantine stations.
Collapse
Affiliation(s)
- Thierry Candresse
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS 20032, 33882 Villenave d'Ornon Cedex, France
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS 20032, 33882 Villenave d'Ornon Cedex, France
| | - Denis Filloux
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Brejnev Muhire
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlotte Julian
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Serge Galzi
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Guillaume Fort
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Pauline Bernardo
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Jean-Heindrich Daugrois
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Emmanuel Fernandez
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, South Africa
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| |
Collapse
|
26
|
Jeske H, Kober S, Schäfer B, Strohmeier S. Circomics of Cuban geminiviruses reveals the first alpha-satellite DNA in the Caribbean. Virus Genes 2014; 49:312-24. [DOI: 10.1007/s11262-014-1090-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 11/24/2022]
|
27
|
Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J, Mumford R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res 2014; 186:20-31. [DOI: 10.1016/j.virusres.2013.12.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023]
|
28
|
Dayaram A, Galatowitsch M, Harding JS, Argüello-Astorga GR, Varsani A. Novel circular DNA viruses identified in Procordulia grayi and Xanthocnemis zealandica larvae using metagenomic approaches. INFECTION GENETICS AND EVOLUTION 2014; 22:134-41. [DOI: 10.1016/j.meegid.2014.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/27/2022]
|
29
|
Sikorski A, Dayaram A, Varsani A. Identification of a Novel Circular DNA Virus in New Zealand Fur Seal (Arctocephalus forsteri) Fecal Matter. GENOME ANNOUNCEMENTS 2013; 1:e00558-13. [PMID: 23929471 PMCID: PMC3738887 DOI: 10.1128/genomea.00558-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 01/22/2023]
Abstract
Fur seal feces-associated circular DNA virus (FSfaCV) is a novel virus isolated from the fecal matter of New Zealand fur seals. FSfaCV has two main open reading frames in its 2,925-nucleotide (nt) genome. The replication-associated protein (Rep) of FSfaCV has similarity to Rep-like sequences in the Giardia intestinalis genome.
Collapse
Affiliation(s)
- Alyssa Sikorski
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anisha Dayaram
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|
30
|
Abstract
Geminiviruses are a family of plant viruses that cause economically important plant diseases worldwide. These viruses have circular single-stranded DNA genomes and four to eight genes that are expressed from both strands of the double-stranded DNA replicative intermediate. The transcription of these genes occurs under the control of two bidirectional promoters and one monodirectional promoter. The viral proteins function to facilitate virus replication, virus movement, the assembly of virus-specific nucleoprotein particles, vector transmission and to counteract plant host defence responses. Recent research findings have provided new insights into the structure and function of these proteins and have identified numerous host interacting partners. Most of the viral proteins have been shown to be multifunctional, participating in multiple events during the infection cycle and have, indeed, evolved coordinated interactions with host proteins to ensure a successful infection. Here, an up-to-date review of viral protein structure and function is presented, and some areas requiring further research are identified.
Collapse
Affiliation(s)
- Vincent N Fondong
- Department of Biological Sciences, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA.
| |
Collapse
|
31
|
Kraberger S, Harkins GW, Kumari SG, Thomas JE, Schwinghamer MW, Sharman M, Collings DA, Briddon RW, Martin DP, Varsani A. Evidence that dicot-infecting mastreviruses are particularly prone to inter-species recombination and have likely been circulating in Australia for longer than in Africa and the Middle East. Virology 2013; 444:282-91. [PMID: 23886492 DOI: 10.1016/j.virol.2013.06.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/08/2013] [Accepted: 06/24/2013] [Indexed: 11/25/2022]
Abstract
Viruses of the genus Mastrevirus (family Geminiviridae) are transmitted by leafhoppers and infect either mono- or dicotyledonous plants. Here we have determined the full length sequences of 49 dicot-infecting mastrevirus isolates sampled in Australia, Eritrea, India, Iran, Pakistan, Syria, Turkey and Yemen. Comprehensive analysis of all available dicot-infecting mastrevirus sequences showed the diversity of these viruses in Australia to be greater than in the rest of their known range, consistent with earlier studies, and that, in contrast with the situation in monocot-infecting mastreviruses, detected inter-species recombination events outnumbered intra-species recombination events. Consistent with Australia having the greatest diversity of known dicot-infecting mastreviruses phylogeographic analyses indicating the most plausible scheme for the spread of these viruses to their present locations, suggest that most recent common ancestor of these viruses is likely nearer Australia than it is to the other regions investigated.
Collapse
Affiliation(s)
- Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Identification of Starling Circovirus in an Estuarine Mollusc (Amphibola crenata) in New Zealand Using Metagenomic Approaches. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00278-13. [PMID: 23723397 PMCID: PMC3668005 DOI: 10.1128/genomea.00278-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two complete genomes of starling circovirus (StCV) were recovered from Amphibola crenata, an estuarine New Zealand mollusc. This is the first report of StCV outside Europe. The viral genomes were recovered from rolling circle-amplified enriched circular DNA followed by back-to-back primers and specific primer PCR amplification.
Collapse
|
33
|
Dayaram A, Potter KA, Moline AB, Rosenstein DD, Marinov M, Thomas JE, Breitbart M, Rosario K, Argüello-Astorga GR, Varsani A. High global diversity of cycloviruses amongst dragonflies. J Gen Virol 2013; 94:1827-1840. [PMID: 23596268 DOI: 10.1099/vir.0.052654-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the family Circoviridae, specifically the genus Circovirus, were thought to infect only vertebrates; however, members of a sister group under the same family, the proposed genus Cyclovirus, have been detected recently in insects. In an effort to explore the diversity of cycloviruses and better understand the evolution of these novel ssDNA viruses, here we present five cycloviruses isolated from three dragonfly species (Orthetrum sabina, Xanthocnemis zealandica and Rhionaeschna multicolor) collected in Australia, New Zealand and the USA, respectively. The genomes of these five viruses share similar genome structure to other cycloviruses, with a circular ~1.7 kb genome and two major bidirectionally transcribed ORFs. The genomic sequence data gathered during this study were combined with all cyclovirus genomes available in public databases to identify conserved motifs and regulatory elements in the intergenic regions, as well as determine diversity and recombinant regions within their genomes. The genomes reported here represent four different cyclovirus species, three of which are novel. Our results confirm that cycloviruses circulate widely in winged-insect populations; in eight different cyclovirus species identified in dragonflies to date, some of these exhibit a broad geographical distribution. Recombination analysis revealed both intra- and inter-species recombination events amongst cycloviruses, including genomes recovered from disparate sources (e.g. goat meat and human faeces). Similar to other well-characterized circular ssDNA viruses, recombination may play an important role in cyclovirus evolution.
Collapse
Affiliation(s)
- Anisha Dayaram
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Kristen A Potter
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Angela B Moline
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Dana Drake Rosenstein
- School of Anthropology, University of Arizona, 1009 E South Campus Drive, Tucson, AZ 85721-0030, USA
| | - Milen Marinov
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - John E Thomas
- Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia.,Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 247, Brisbane, QLD 4001, Australia
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Karyna Rosario
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Gerardo R Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P., Mexico
| | - Arvind Varsani
- Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa.,Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
34
|
Dayaram A, Goldstien S, Zawar-Reza P, Gomez C, Harding JS, Varsani A. Novel ssDNA virus recovered from estuarine Mollusc (Amphibola crenata) whose replication associated protein (Rep) shares similarities with Rep-like sequences of bacterial origin. J Gen Virol 2013; 94:1104-1110. [PMID: 23364192 DOI: 10.1099/vir.0.050088-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Over the past couple of years highly diverse novel ssDNA viruses have been discovered. Here, we present the first ssDNA virus, Gastropod-associated circular ssDNA virus (GaCSV), recovered from a mollusc Amphibola crenata Martyn 1784, which is a deposit feeder that grazes micro-organisms and organic detritus on the surface of tidal mudflats. The GaCSV (2351 nt) genome contains two large bidirectionally transcribed ORFs. The smaller ORF (874 nt) has similarities to viral replication-associated protein (Rep) sequences of some bacteria and circoviruses, whereas the larger ORF (955 nt) does not relate to any sequences in public databases and we presume it potentially encodes the capsid protein. Phylogenetic analysis shows that the GaCSV Rep clusters with Rep-like sequences of bacterial origin, highlighting the role of ssDNA viruses in horizontal gene transfer. The occurrence of previously unknown viruses in organisms associated with human pollution is a relatively unexplored field.
Collapse
Affiliation(s)
- Anisha Dayaram
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Sharyn Goldstien
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Peyman Zawar-Reza
- Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Department of Geography, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Christopher Gomez
- Natural hazards research centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Department of Geography, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Jon S Harding
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa.,Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|