1
|
Adegbola RO, Ponvert ND, Brown JK. Genetic Variability Among U.S.-Sentinel Cotton Plot Cotton Leafroll Dwarf Virus and Globally Available Reference Isolates Based on ORF0 Diversity. PLANT DISEASE 2024; 108:1799-1811. [PMID: 38277653 DOI: 10.1094/pdis-02-23-0243-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The aphid-transmitted polerovirus, cotton leafroll dwarf virus (CLRDV), first characterized from symptomatic cotton plants in South America, has been identified in commercial cotton plantings in the United States. Here, the CLRDV intraspecific diversity was investigated by comparative sequence analysis of the most divergent CLRDV coding region, ORF0/P0. Bayesian analysis of ORF0 sequences for U.S. and reference populations resolved three well-supported sister clades comprising one U.S. and two South American lineages. Principal component analysis (PCA) identified seven statistically supported intraspecific populations. The Bayesian phylogeny and PCA dendrogram-inferred relationships were congruent. Population analysis of ORF0 sequences indicated most lineages have evolved under negative selection, albeit certain sites/isolates evolved under positive selection. Both U.S. and South American isolates exhibited extensive ORF0 diversity. At least two U.S. invasion foci were associated with their founder populations in Alabama-Georgia and eastern Texas. The Alabama-Georgia founder is implicated as the source of recent widespread expansion and establishment of secondary disease foci throughout the southeastern-central United States. Based on the geographically restricted distribution, spread of another extant Texas population appeared impeded by a population bottleneck. Extant CLRDV isolates represent several putative introductions potentially associated with catastrophic weather events dispersing viruliferous cotton aphids of unknown origin(s).
Collapse
Affiliation(s)
| | | | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
2
|
Liu L, Ren Q, Peng B, Kang B, Wu H, Gu Q. Construction of an Agrobacterium-mediated infectious cDNA clone of melon aphid-borne yellows virus. Virus Res 2022; 315:198779. [PMID: 35427675 DOI: 10.1016/j.virusres.2022.198779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
Melon aphid-borne yellows virus (MABYV), a member of the genus Polerovirus in the family Solemoviridae, has widely spread in recent years and cause yellowing disease on cucurbits. Here, we obtained the complete genome sequence of MABYV bottle guard (Lagenaria siceraria) isolate MABYV-KF, and constructed its infectious cDNA clone under the control of the cauliflower mosaic virus (CaMV) 35S promoter by Gibson assembly. The 5,677 nt of its genome shared more than 94.00% sequence identity with the two known MABYV isolates. The inoculation results showed that MABYV infectious cDNA clone could systemically infect bottle guard, cucumber and muskmelon plants, and cause typical yellowing symptom. The virus progeny from the infectious clone could be transmitted between bottle guard plants by aphid. Further analyses revealed that point mutations in the F-box-like motif (Pro57) and C-terminal conserved sequence (Phe211) of P0 cause low viral accumulations in systematic leaves and failed to induce symptom. The infectious clone will be potentially a tool in the investigation of viral pathogenesis, virus-virus interaction and virus-host/-vector interactions.
Collapse
Affiliation(s)
- Liming Liu
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Qian Ren
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Bin Peng
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Baoshan Kang
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Huijie Wu
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China
| | - Qinsheng Gu
- Henan Provincial Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China.
| |
Collapse
|
3
|
Hao X, Song S, Zhong Q, Hajano JUD, Guo J, Wu Y. Rescue of an Infectious cDNA Clone of Barley Yellow Dwarf Virus-GAV. PHYTOPATHOLOGY 2021; 111:2383-2391. [PMID: 33961494 DOI: 10.1094/phyto-11-20-0522-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Barley yellow dwarf virus-GAV (BYDV-GAV) is one of the most prevalent viruses causing yellow dwarf disease in wheat in China. The biology and pathology of BYDV-GAV are well studied; however, gene functions and molecular mechanisms of BYDV-GAV disease development are unclear because of the lack of a reverse genetics system. In this study, a full-length complementary DNA (cDNA) clone of BYDV-GAV was constructed and expressed via Agrobacterium-mediated inoculation of Nicotiana benthamiana. Virions produced by BYDV-GAV in N. benthamiana were transmitted to wheat by an aphid vector after acquisition via a sandwich feeding method. Infectivity of the cDNA clone in wheat was verified via reverse transcription PCR and western blot assays, and the recombinant virus elicited typical reddening symptoms in oats and was transmitted between wheat plants. These results confirm the production of biologically active transmissible virions. Using the BYDV-GAV infectious clone, we demonstrate that viral protein P4 was involved in cell-to-cell movement and stunting symptoms in wheat. This is the first report describing the development of an infectious full-length cDNA clone of BYDV-GAV and provides a useful tool for virus-host-vector interaction studies.
Collapse
Affiliation(s)
- Xingan Hao
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Shuang Song
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qinrong Zhong
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Jamal-U-Ddin Hajano
- Sindh Agriculture University, Faculty of Crop Protection, Department of Plant Pathology, Tandojam 70600, Pakistan
| | - Jie Guo
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus. Viruses 2021; 13:v13061050. [PMID: 34206030 PMCID: PMC8229035 DOI: 10.3390/v13061050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Tomato mottle mosaic virus (ToMMV) is a noteworthy virus which belongs to the Virgaviridae family and causes serious economic losses in tomato. Here, we isolated and cloned the full-length genome of a ToMMV Chinese isolate (ToMMV-LN) from a naturally infected tomato (Solanum lycopersicum L.). Sequence analysis showed that ToMMV-LN contains 6399 nucleotides (nts) and is most closely related to a ToMMV Mexican isolate with a sequence identity of 99.48%. Next, an infectious cDNA clone of ToMMV was constructed by a homologous recombination approach. Both the model host N. benthamiana and the natural hosts tomato and pepper developed severe symptoms upon agroinfiltration with pToMMV, which had a strong infectivity. Electron micrographs indicated that a large number of rigid rod-shaped ToMMV virions were observed from the agroinfiltrated N. benthamiana leaves. Finally, our results also confirmed that tomato plants inoculated with pToMMV led to a high infection rate of 100% in 4–5 weeks post-infiltration (wpi), while pepper plants inoculated with pToMMV led to an infection rate of 40–47% in 4–5 wpi. This is the first report of the development of a full-length infectious cDNA clone of ToMMV. We believe that this infectious clone will enable further studies of ToMMV genes function, pathogenicity and virus–host interaction.
Collapse
|
5
|
Bortolamiol-Bécet D, Monsion B, Chapuis S, Hleibieh K, Scheidecker D, Alioua A, Bogaert F, Revers F, Brault V, Ziegler-Graff V. Phloem-Triggered Virus-Induced Gene Silencing Using a Recombinant Polerovirus. Front Microbiol 2018; 9:2449. [PMID: 30405546 PMCID: PMC6206295 DOI: 10.3389/fmicb.2018.02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
The phloem-limited poleroviruses infect Arabidopsis thaliana without causing noticeable disease symptoms. In order to facilitate visual infection identification, we developed virus-induced gene silencing (VIGS) vectors derived from Turnip yellows virus (TuYV). Short sequences from the host gene AtCHLI1 required for chlorophyll biosynthesis [42 nucleotides in sense or antisense orientation or as an inverted-repeat (IR), or an 81 nucleotide sense fragment] were inserted into the 3' non-coding region of the TuYV genome to screen for the most efficient and robust silencing vector. All recombinant viruses produced a clear vein chlorosis phenotype on infected Arabidopsis plants due to the expression inhibition of the AtCHLI1 gene. The introduction of a sense-oriented sequence into TuYV genome resulted in a virus exhibiting a more sustainable chlorosis than the virus containing an IR of the same length. This observation was correlated with a higher stability of the sense sequence insertion in the viral genome. In order to evaluate the impact of the TuYV silencing suppressor P0 in the VIGS mechanism a P0 knock-out mutation was introduced into the recombinant TuYV viruses. They induced a similar but milder vein clearing phenotype due to lower viral accumulation. This indicates that P0 does not hinder the performances of the TuYV silencing effect and confirms that in the viral infection context, P0 has no major impact on the production, propagation and action of the short distance silencing signal in phloem cells. Finally, we showed that TuYV can be used to strongly silence the phloem specific AtRTM1 gene. The TuYV-derived VIGS vectors therefore represent powerful tools to easily detect and monitor TuYV in infected plants and conduct functional analysis of phloem-restricted genes. Moreover this example indicates the potential of poleroviruses for use in functional genomic studies of agronomic plants.
Collapse
Affiliation(s)
- Diane Bortolamiol-Bécet
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire CNRS-UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Baptiste Monsion
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,UMR1161 Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sophie Chapuis
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Danièle Scheidecker
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Abdelmalek Alioua
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Florent Bogaert
- SVQV, INRA UMR 1131, Université de Strasbourg, Colmar, France
| | - Frédéric Revers
- BFP, INRA UMR 1332, Univ. Bordeaux, Villenave d'Ornon, France.,BIOGECO, INRA UMR 1202, Univ. Bordeaux, Pessac, France
| | | | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Wetzel V, Brault V, Varrelmann M. Production of a Beet chlorosis virus full-length cDNA clone by means of Gibson assembly and analysis of biological properties. J Gen Virol 2018; 99:1522-1527. [PMID: 30215595 DOI: 10.1099/jgv.0.001146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Beet chlorosis virus (genus Polerovirus, family Luteoviridae), which is persistently transmitted by the aphid Myzus persicae, is part of virus yellows in sugar beet and causes interveinal yellowing as well as significant yield loss in Beta vulgaris. To allow reverse genetic studies and replace vector transmission, an infectious cDNA clone under cauliflower mosaic virus 35S control in a binary vector for agrobacterium-mediated infection was constructed using Gibson assembly. Following agroinoculation, the BChV full-length clone was able to induce a systemic infection of the cultivated B. vulgaris. The engineered virus was successfully aphid-transmitted when acquired from infected B. vulgaris and displayed the same host plant spectrum as wild-type virus. This new polerovirus infectious clone is a valuable tool to identify the viral determinants involved in host range and study BChV protein function, and can be used to screen sugar beet for BChV resistance.
Collapse
Affiliation(s)
- Veronika Wetzel
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| | - Véronique Brault
- 2SVQV, Université de Strasbourg, INRA, Equipe Virologie Vection, 28 Rue de Herrlisheim, 68000 Colmar, France
| | - Mark Varrelmann
- 1Department of Phytopathology, Institute of Sugar Beet Research, 37079 Göttingen, Germany
| |
Collapse
|
7
|
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:405-426. [PMID: 30149789 DOI: 10.1146/annurev-phyto-080417-050141] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Cara Mortimer
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Fatima Naim
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Roger Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0002, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA;
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| |
Collapse
|
8
|
Bijora T, Blawid R, Costa DKT, Aragão FJL, Souto ER, Nagata T. Construction of an agroinfectious clone of bean rugose mosaic virus using Gibson Assembly. Virus Genes 2017; 53:495-499. [PMID: 28315991 DOI: 10.1007/s11262-017-1446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/11/2017] [Indexed: 10/19/2022]
Abstract
Construction of agroinfectious viral clones usually requires many steps of cloning and sub-cloning and also a binary vector, which makes the process laborious, time-consuming, and frequently susceptible to some degree of plasmid instability. Nowadays, novel methods have been applied to the assembly of infectious viral clones, and here we have applied isothermal, single-step Gibson Assembly (GA) to construct an agroinfectious clone of Bean rugose mosaic virus (BRMV) using a small binary vector. The procedure has drastically reduced the cloning steps, and BRMV could be recovered from agroinfiltrated common bean twenty days after inoculation, indicating that the infectious clone could spread in the plant tissues and efficiently generate a systemic infection. The virus was also recovered from leaves of common bean and soybean cultivars mechanically inoculated with infectious clone two weeks after inoculation, confirming the efficiency of GA cloning procedure to produce the first BRMV agroinfectious clone to bean and soybean.
Collapse
Affiliation(s)
- Taise Bijora
- Universidade Estadual de Maringá, 5790 Av. Colombo, Maringá, PR, Brazil
| | | | | | | | - Eliezer R Souto
- Universidade Estadual de Maringá, 5790 Av. Colombo, Maringá, PR, Brazil.
- Department of Agronomy, Center of Agricultural Sciences, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil.
| | - Tatsuya Nagata
- Universidade de Brasília, Brasília, DF, Brazil.
- Department of Cellular Biology, Biological Sciences institute, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
9
|
Agrofoglio YC, Delfosse VC, Casse MF, Hopp HE, Kresic IB, Distéfano AJ. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina. PHYTOPATHOLOGY 2017; 107:369-376. [PMID: 28035870 DOI: 10.1094/phyto-09-16-0349-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.
Collapse
Affiliation(s)
- Yamila C Agrofoglio
- First author: INTA-CICVyA, CONICET, Instituto de Biotecnología, 1686 Buenos Aires; second author: INTA-CICVyA, CONICET, Instituto de Biotecnología and School of Science and Technology, UNSAM, 1653 Buenos Aires; third and fifth authors: EEA Sáenz Peña, INTA, 3700 Chaco, Argentina; and fourth and sixth authors: INTA-CICVyA, Instituto de Biotecnología and DFBMC, FCEyN, UBA, 1428 Buenos Aires
| | - Verónica C Delfosse
- First author: INTA-CICVyA, CONICET, Instituto de Biotecnología, 1686 Buenos Aires; second author: INTA-CICVyA, CONICET, Instituto de Biotecnología and School of Science and Technology, UNSAM, 1653 Buenos Aires; third and fifth authors: EEA Sáenz Peña, INTA, 3700 Chaco, Argentina; and fourth and sixth authors: INTA-CICVyA, Instituto de Biotecnología and DFBMC, FCEyN, UBA, 1428 Buenos Aires
| | - María F Casse
- First author: INTA-CICVyA, CONICET, Instituto de Biotecnología, 1686 Buenos Aires; second author: INTA-CICVyA, CONICET, Instituto de Biotecnología and School of Science and Technology, UNSAM, 1653 Buenos Aires; third and fifth authors: EEA Sáenz Peña, INTA, 3700 Chaco, Argentina; and fourth and sixth authors: INTA-CICVyA, Instituto de Biotecnología and DFBMC, FCEyN, UBA, 1428 Buenos Aires
| | - Horacio E Hopp
- First author: INTA-CICVyA, CONICET, Instituto de Biotecnología, 1686 Buenos Aires; second author: INTA-CICVyA, CONICET, Instituto de Biotecnología and School of Science and Technology, UNSAM, 1653 Buenos Aires; third and fifth authors: EEA Sáenz Peña, INTA, 3700 Chaco, Argentina; and fourth and sixth authors: INTA-CICVyA, Instituto de Biotecnología and DFBMC, FCEyN, UBA, 1428 Buenos Aires
| | - Iván Bonacic Kresic
- First author: INTA-CICVyA, CONICET, Instituto de Biotecnología, 1686 Buenos Aires; second author: INTA-CICVyA, CONICET, Instituto de Biotecnología and School of Science and Technology, UNSAM, 1653 Buenos Aires; third and fifth authors: EEA Sáenz Peña, INTA, 3700 Chaco, Argentina; and fourth and sixth authors: INTA-CICVyA, Instituto de Biotecnología and DFBMC, FCEyN, UBA, 1428 Buenos Aires
| | - Ana J Distéfano
- First author: INTA-CICVyA, CONICET, Instituto de Biotecnología, 1686 Buenos Aires; second author: INTA-CICVyA, CONICET, Instituto de Biotecnología and School of Science and Technology, UNSAM, 1653 Buenos Aires; third and fifth authors: EEA Sáenz Peña, INTA, 3700 Chaco, Argentina; and fourth and sixth authors: INTA-CICVyA, Instituto de Biotecnología and DFBMC, FCEyN, UBA, 1428 Buenos Aires
| |
Collapse
|
10
|
Zhang XY, Dong SW, Xiang HY, Chen XR, Li DW, Yu JL, Han CG. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation. Virus Res 2015; 197:13-6. [PMID: 25499296 DOI: 10.1016/j.virusres.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Shu-Wei Dong
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Hai-Ying Xiang
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Xiang-Ru Chen
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Da-Wei Li
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Jia-Lin Yu
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Kochetov AV. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs. Bioessays 2014; 36:1204-12. [DOI: 10.1002/bies.201400111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alex V. Kochetov
- Institute of Cytology & Genetics, SB RAS; Novosibirsk Russia
- Novosibirsk State University; Novosibirsk Russia
| |
Collapse
|
12
|
Junqueira BRT, Nicolini C, Lucinda N, Orílio AF, Nagata T. A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector. J Virol Methods 2014; 198:32-6. [PMID: 24388933 DOI: 10.1016/j.jviromet.2013.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants.
Collapse
Affiliation(s)
| | - Cícero Nicolini
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Natalia Lucinda
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Anelise Franco Orílio
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Tatsuya Nagata
- Pós-graduação em Biologia Molecular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
13
|
Delfosse VC, Agrofoglio YC, Casse MF, Kresic IB, Hopp HE, Ziegler-Graff V, Distéfano AJ. The P0 protein encoded by cotton leafroll dwarf virus (CLRDV) inhibits local but not systemic RNA silencing. Virus Res 2014; 180:70-5. [PMID: 24370867 DOI: 10.1016/j.virusres.2013.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/08/2013] [Accepted: 12/13/2013] [Indexed: 11/28/2022]
Abstract
Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection.
Collapse
Affiliation(s)
| | | | | | | | - H Esteban Hopp
- Instituto de Biotecnología, CICVyA, CNIA, INTA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina.
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS conventionné avec l'Université de Strasbourg, Strasbourg, France.
| | - Ana J Distéfano
- Instituto de Biotecnología, CICVyA, CNIA, INTA, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina.
| |
Collapse
|