1
|
Filaire F, Bertran K, Gaide N, Valle R, Secula A, Perlas A, Foret-Lucas C, Nofrarías M, Cantero G, Croville G, Majó N, Guerin JL. Viral shedding and environmental dispersion of two clade 2.3.4.4b H5 high pathogenicity avian influenza viruses in experimentally infected mule ducks: implications for environmental sampling. Vet Res 2024; 55:100. [PMID: 39135123 PMCID: PMC11318174 DOI: 10.1186/s13567-024-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
High pathogenicity avian influenza viruses (HPAIVs) have caused major epizootics in recent years, with devastating consequences for poultry and wildlife worldwide. Domestic and wild ducks can be highly susceptible to HPAIVs, and infection leads to efficient viral replication and massive shedding (i.e., high titres for an extended time), contributing to widespread viral dissemination. Importantly, ducks are known to shed high amounts of virus in the earliest phase of infection, but the dynamics and impact of environmental contamination on the epidemiology of HPAIV outbreaks are poorly understood. In this study, we monitored mule ducks experimentally infected with two H5N8 clade 2.3.4.4b goose/Guangdong HPAIVs sampled in France in 2016-2017 and 2020-2021 epizootics. We investigated viral shedding dynamics in the oropharynx, cloaca, conjunctiva, and feathers; bird-to-bird viral transmission; and the role of the environment in viral spread and as a source of samples for early detection and surveillance. Our findings showed that viral shedding started before the onset of clinical signs, i.e., as early as 1 day post-inoculation (dpi) or post-contact exposure, peaked at 4 dpi, and lasted for up to 14 dpi. The detection of viral RNA in aerosols, dust, and water samples mirrored viral shedding dynamics, and viral isolation from these environmental samples was successful throughout the experiment. Our results confirm that mule ducks can shed high HPAIV titres through the four excretion routes tested (oropharyngeal, cloacal, conjunctival, and feather) while being asymptomatic and that environmental sampling could be a non-invasive tool for early viral RNA detection in HPAIV-infected farms.
Collapse
Affiliation(s)
- Fabien Filaire
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- LanXess Group, THESEO France, Lanxess Biosecurity, Laval, France
| | - Kateri Bertran
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Programa de Sanitat Animal, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Nicolas Gaide
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Rosa Valle
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Programa de Sanitat Animal, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Aurélie Secula
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Albert Perlas
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Programa de Sanitat Animal, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | | | - Miquel Nofrarías
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Programa de Sanitat Animal, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Programa de Sanitat Animal, IRTA, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | | | - Natàlia Majó
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Jean-Luc Guerin
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
2
|
Komu JG, Nguyen HD, Takeda Y, Fukumoto S, Imai K, Takemae H, Mizutani T, Ogawa H. Challenges for Precise Subtyping and Sequencing of a H5N1 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Virus Isolated in Japan in the 2022-2023 Season Using Classical Serological and Molecular Methods. Viruses 2023; 15:2274. [PMID: 38005950 PMCID: PMC10675786 DOI: 10.3390/v15112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The continuous evolution of H5Nx highly pathogenic avian influenza viruses (HPAIVs) is a major concern for accurate diagnosis. We encountered some challenges in subtyping and sequencing a recently isolated H5N1 HPAIV strain using classical diagnostic methods. Oropharyngeal, conjunctival, and cloacal swabs collected from a dead white-tailed eagle (Haliaeetus albicilla albicilla) were screened via real-time RT-PCR targeting the influenza A virus matrix (M) gene, followed by virus isolation. The hemagglutination inhibition test was applied in order to subtype and antigenically characterize the isolate using anti-A/duck/Hong Kong/820/80 (H5N3) reference serum or anti-H5N1 cross-clade monoclonal antibodies (mAbs). Sequencing using previously reported universal primers was attempted in order to analyze the full-length hemagglutinin (HA) gene. Oropharyngeal and conjunctival samples were positive for the M gene, and high hemagglutination titers were detected in inoculated eggs. However, its hemagglutination activity was not inhibited by the reference serum or mAbs. The antiserum to a recently isolated H5N1 clade 2.3.4.4b strain inhibited our isolate but not older strains. A homologous sequence in the previously reported forward primer and HA2 region in our isolate led to partial HA gene amplification. Finally, next-generation sequencing confirmed the isolate as H5N1 clade 2.3.4.4b HPAIV, with genetic similarity to H5N1 strains circulating in Japan since November 2021.
Collapse
Affiliation(s)
- James G. Komu
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (J.G.K.); (H.D.N.)
- Department of Medical Laboratory Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Hiep Dinh Nguyen
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (J.G.K.); (H.D.N.)
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (Y.T.); (S.F.); (K.I.)
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Shinya Fukumoto
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (Y.T.); (S.F.); (K.I.)
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Kunitoshi Imai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (Y.T.); (S.F.); (K.I.)
| | - Hitoshi Takemae
- Center for Infectious Diseases Epidemiology and Prevention Research, CEPiR, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan; (H.T.); (T.M.)
| | - Tetsuya Mizutani
- Center for Infectious Diseases Epidemiology and Prevention Research, CEPiR, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan; (H.T.); (T.M.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan; (Y.T.); (S.F.); (K.I.)
| |
Collapse
|
3
|
Soda K, Tomioka Y, Hidaka C, Matsushita M, Usui T, Yamaguchi T. Susceptibility of common family Anatidae bird species to clade 2.3.4.4e H5N6 high pathogenicity avian influenza virus: an experimental infection study. BMC Vet Res 2022; 18:127. [PMID: 35366864 PMCID: PMC8976319 DOI: 10.1186/s12917-022-03222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
There were large outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.4e H5N6 viruses in the winter of 2016–2017 in Japan, which caused large numbers of deaths among several endangered bird species including cranes, raptors, and birds in Family Anatidae. In this study, susceptibility of common Anatidae to a clade 2.3.4.4e H5N6 HPAI virus was assessed to evaluate their potential to be a source of infection for other birds. Eurasian wigeons (Mareca penelope), mallards (Anas platyrhynchos), and Northern pintails (Anas acuta) were intranasally inoculated with 106, 104, or 102 50% egg infectious dose (EID50) of clade 2.3.4.4e A/teal/Tottori/1/2016 (H5N6).
Results
All birds survived for 10 days without showing any clinical signs of infection. Most ducks inoculated with ≥ 104 EID50 of virus seroconverted within 10 days post-inoculation (dpi). Virus was mainly shed via the oral route for a maximum of 10 days, followed by cloacal route in late phase of infection. Virus remained in the pancreas of some ducks at 10 dpi. Viremia was observed in some ducks euthanized at 3 dpi, and ≤ 106.3 EID50 of virus was recovered from systemic tissues and swab samples including eyeballs and conjunctival swabs.
Conclusions
These results indicate that the subject duck species have a potential to be a source of infection of clade 2.3.4.4e HPAI virus to the environment and other birds sharing their habitats. Captive ducks should be reared under isolated or separated circumstances during the HPAI epidemic season to prevent infection and further viral dissemination.
Collapse
|
4
|
Yamamoto Y, Nakamura K, Yamada M, Mase M. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus. Vet Pathol 2015; 53:65-76. [PMID: 26123230 DOI: 10.1177/0300985815591077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field.
Collapse
Affiliation(s)
- Y Yamamoto
- National Institute of Animal Health, Tsukuba, Japan
| | - K Nakamura
- National Institute of Animal Health, Tsukuba, Japan
| | - M Yamada
- National Institute of Animal Health, Tsukuba, Japan
| | - M Mase
- National Institute of Animal Health, Tsukuba, Japan
| |
Collapse
|
5
|
Bertran K, Moresco K, Swayne DE. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay. Vaccine 2015; 33:1324-30. [PMID: 25657093 DOI: 10.1016/j.vaccine.2015.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
High pathogenicity avian influenza virus (HPAIV) infections in chickens negatively impact egg production and cause egg contamination. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H5N2 HPAIV. However, Asian H5N1 HPAIV infection has some characteristics of increased pathogenicity compared to other H5 HPAIV such as more rapid drop and complete cessation in egg production. Sham (vaccinated at 25 and 28 weeks of age), inactivated H5N1 Once (1X-H5-Vax; vaccinated at 28 weeks of age only) and inactivated H5N1 Twice (2X-H5-Vax; vaccinated at 25 and 28 weeks of age) vaccinated adult White Leghorn hens were challenged intranasally at 31 weeks of age with 6.1 log10 mean embryo infectious doses (EID50) of clade 2.3.2.1a H5N1 HPAIV (A/chicken/Vietnam/NCVD-675/2011) which was homologous to the inactivated vaccine. Sham-vaccinated layers experienced 100% mortality within 3 days post-challenge; laid soft and thin-shelled eggs; had recovery of virus from oral swabs and in 53% of the eggs from eggshell surface (35%), yolk (24%), and albumin (41%); and had very high titers of virus (average 7.91 log10 EID50/g) in all segments of the oviduct and ovary. By comparison, 1X- and 2X-H5-Vax challenged hens survived infection, laid similar number of eggs pre- and post-challenge, all eggs had normal egg shell quality, and had significantly fewer contaminated eggs with reduced virus quantity. The 2X-H5-Vax hens had significantly higher HI titers by the day of challenge (304 GMT) and at termination (512 GMT) than 1X-H5-Vax hens (45 GMT and 128 GMT). The current study demonstrated that AIV infections caused by clade 2.3.2.1a H5N1 variants can be effectively controlled by either double or single homologous vaccination.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA
| | - Kira Moresco
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA.
| |
Collapse
|
6
|
Le TH, Nguyen NTB. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam. Clin Exp Vaccine Res 2014; 3:117-27. [PMID: 25003084 PMCID: PMC4083063 DOI: 10.7774/cevr.2014.3.2.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 01/05/2023] Open
Abstract
Based on hemagglutinin (HA) and neuraminidase (NA), influenza A virus is divided into 18 different HA (H1 to H18) and 11 NA types (N1 to N11), opening the possibility for reassortment between the HA and NA genes to generate new HxNy subtypes (where x could be any HA and y is any NA, possibly). In recent four years, since 2010, highly pathogenic avian influenza (HPAI) viruses of H5N1 subtype (HPAI A/H5N1) have become highly enzootic and dynamically evolved to form multiple H5 HA clades, particularly in China, Vietnam, Indonesia, Egypt, Cambodia, and Bangladesh. So far, after more than 10 years emerged in Vietnam (since late 2003), HPAI A/H5N1 is still posing a potential risk of causing outbreaks in poultry, with high frequency of annual endemics. Intragenic variation (referred to as antigenic drift) in HA (e.g., H5) has given rise to form numerous clades, typically marking the major timelines of the evolutionary status and vaccine application in each period. The dominance of genetically and antigenically diversified clade 2.3.2.1 (of subgroups a, b, c), clade 1.1 (1.1.1/1.1.2) and re-emergence of clade 7.1/7.2 at present, has urged Vietnam to the need for dynamically applied antigenicity-matching vaccines, i.e., the plan of importing Re-6 vaccine for use in 2014, in parallel use of Re-1/Re-5 since 2006. In this review, we summarize evolutionary features of HPAI A/H5N1 viruses and clade formation during recent 10 years (2004-2014). Dynamic of vaccine implementation in Vienam is also remarked.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nga Thi Bich Nguyen
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
7
|
Bui VN, Ogawa H, Trinh DQ, Nguyen THT, Pham NT, Truong DA, Bui AN, Runstadler J, Imai K, Nguyen KV. Genetic characterization of an H5N1 avian influenza virus from a vaccinated duck flock in Vietnam. Virus Genes 2014; 49:278-85. [PMID: 24880916 DOI: 10.1007/s11262-014-1089-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/14/2014] [Indexed: 11/28/2022]
Abstract
This study reports the genetic characterization of a highly pathogenic avian influenza virus subtype H5N1 isolated from a moribund domestic duck in central Vietnam during 2012. In the moribund duck's flock, within 6 days after vaccination with a commercial H5N1 vaccine (Re-5) to 59-day-old birds, 120 out of 2,000 ducks died. Genetic analysis revealed a substantial number of mutations in the HA gene of the isolate in comparison with the vaccine strains, Re-1 and Re-5. Similar mutations were also found in selected Vietnamese H5N1 strains isolated since 2009. Mutations in the HA gene involved positions at antigenic sites associated with antibody binding and also neutralizing epitopes, with some of the mutations resulting in the modification of N-linked glycosylation of the HA. Those mutations may be related to the escape of virus from antibody binding and the infection of poultry, interpretations which may be confirmed through a reverse genetics approach. The virus also carried an amino acid substitution in the M2, which conferred a reduced susceptibility to amantadine, but no neuraminidase inhibitor resistance markers were found in the viral NA gene. Additional information including vaccination history in the farm and the surrounding area is needed to fully understand the background of this outbreak. Such understanding and expanded monitoring of the H5N1 influenza viruses circulating in Vietnam is an urgent need to provide updated information to improve effective vaccine strain selection and vaccination protocols, aiding disease control, and biosecurity to prevent H5N1 infection in both poultry and humans.
Collapse
Affiliation(s)
- Vuong Nghia Bui
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Hokkaido, Obihiro, 080-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|