1
|
Ullah MA, Sarkar B, Islam SS. Exploiting the reverse vaccinology approach to design novel subunit vaccines against Ebola virus. Immunobiology 2020; 225:151949. [PMID: 32444135 DOI: 10.1016/j.imbio.2020.151949] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
Ebola virus is a highly pathogenic RNA virus that causes the Ebola haemorrhagic fever in human. This virus is considered as one of the dangerous viruses in the world with very high mortality rate. To date, no epitope-based subunit vaccine has yet been discovered to fight against Ebola although the outbreaks of this deadly virus took many lives in the past. In this study, approaches of reverse vaccinology were utilized in combination with different tools of immunoinformatics to design subunit vaccines against Ebola virus strain Mayinga-76. Three potential antigenic proteins of this virus i.e., matrix protein VP40, envelope glycoprotein and nucleoprotein were selected to construct the subunit vaccine. The MHC class-I, MHC class-II and B-cell epitopes were determined initially and after some robust analysis i.e., antigenicity, allergenicity, toxicity, conservancy and molecular docking study, EV-1, EV-2 and EV-3 were constructed as three potential vaccine constructs. These vaccine constructs are also expected to be effective on few other strains of Ebola virus since the highly conserved epitopes were used for vaccine construction. Thereafter, molecular docking study was conducted on these vaccines and EV-1 emerged as the best vaccine construct. Afterward, molecular dynamics simulation study revealed the good performances and stability of the intended vaccine protein. Finally, codon adaptation and in silico cloning were carried out to design a possible plasmid (pET-19b plasmid vector was used) for large scale production of the EV-1 vaccine. However, further in vitro and in vivo studies might be required on the predicted vaccines for final validation.
Collapse
Affiliation(s)
- Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - Syed Sajidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
2
|
Marrugal-Lorenzo JA, Serna-Gallego A, Berastegui-Cabrera J, Pachón J, Sánchez-Céspedes J. Repositioning salicylanilide anthelmintic drugs to treat adenovirus infections. Sci Rep 2019; 9:17. [PMID: 30626902 PMCID: PMC6327057 DOI: 10.1038/s41598-018-37290-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
The repositioning of drugs already approved by regulatory agencies for other indications is an emerging alternative for the development of new antimicrobial therapies. The repositioning process involves lower risks and costs than the de novo development of novel antimicrobial drugs. Currently, infections by adenovirus show a steady increment with a high clinical impact in immunosuppressed and immunocompetent patients. The lack of a safe and efficacious drug to treat these infections supports the search for new antiviral drugs. Here we evaluated the anti-adenovirus activity of niclosanide, oxyclozanide, and rafoxanide, three salicylanilide anthelmintic drugs. Also, we carried out the cytotoxicity evaluation and partial characterization of the mechanism of action of these drugs. The salicylanilide anthelmintic drugs showed significant anti-adenovirus activity at low micromolar concentrations with little cytotoxicity. Moreover, our mechanistic assays suggest differences in the way the drugs exert anti-adenovirus activity. Niclosamide and rafoxanide target transport of the HAdV particle from the endosome to the nuclear envelope, whilst oxyclozanide specifically targets adenovirus immediately early gene E1A transcription. Data suggests that the studied salicylanilide anthelmintic drugs could be suitable for further clinical evaluation for the development of new antiviral drugs to treat infections by adenovirus in immunosuppressed patients and in immunocompetent individuals with community-acquired pneumonia.
Collapse
Affiliation(s)
- José A Marrugal-Lorenzo
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Ana Serna-Gallego
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Judith Berastegui-Cabrera
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.,Department of Medicine, University of Seville, 41009, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain. .,Department of Medicine, University of Seville, 41009, Seville, Spain.
| |
Collapse
|
3
|
Marrugal-Lorenzo JA, Serna-Gallego A, González-González L, Buñuales M, Poutou J, Pachón J, Gonzalez-Aparicio M, Hernandez-Alcoceba R, Sánchez-Céspedes J. Inhibition of adenovirus infection by mifepristone. Antiviral Res 2018; 159:77-83. [PMID: 30268911 DOI: 10.1016/j.antiviral.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022]
Abstract
The repurposing of drugs approved by the regulatory agencies for other indications is emerging as a valuable alternative for the development of new antimicrobial therapies, involving lower risks and costs than the de novo development of novel antimicrobial drugs. Adenovirus infections have showed a steady increment in recent years, with a high clinical impact in both immunosuppressed and immunocompetent patients. In this context, the lack of a specific drug to treat these infections supports the search for new therapeutic alternatives. In this study, we examined the anti-HAdV properties of mifepristone, a commercially available synthetic steroid drug. Mifepristone showed significant in vitro anti-HAdV activity at low micromolar concentrations with little cytotoxicity. Our mechanistic assays suggest that this drug could affect the microtubule transport, interfering with the entry of the virus into the nucleus and therefore inhibiting HAdV infection.
Collapse
Affiliation(s)
- José A Marrugal-Lorenzo
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Seville, Spain
| | - Ana Serna-Gallego
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Seville, Spain
| | - Loreto González-González
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Seville, Spain
| | - Maria Buñuales
- Gene Therapy Unit CIMA, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Spain
| | - Joanna Poutou
- Gene Therapy Unit CIMA, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Seville, Spain; Department of Medicine, University of Seville, Seville, Spain
| | - Manuela Gonzalez-Aparicio
- Gene Therapy Unit CIMA, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Unit CIMA, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Spain.
| | - Javier Sánchez-Céspedes
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Seville, Spain; Department of Medicine, University of Seville, Seville, Spain.
| |
Collapse
|
4
|
Lyman M, Mpofu JJ, Soud F, Oduyebo T, Ellington S, Schlough GW, Koroma AP, McFadden J, Morof D. Maternal and perinatal outcomes in pregnant women with suspected Ebola virus disease in Sierra Leone, 2014. Int J Gynaecol Obstet 2018; 142:71-77. [PMID: 29569244 DOI: 10.1002/ijgo.12490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/05/2018] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To describe maternal and perinatal outcomes among pregnant women with suspected Ebola virus disease (EVD) in Sierra Leone. METHODS Observational investigation of maternal and perinatal outcomes among pregnant women with suspected EVD from five districts in Sierra Leone from June to December 2014. Suspected cases were ill pregnant women with symptoms suggestive of EVD or relevant exposures who were tested for EVD. Case frequencies and odds ratios were calculated to compare patient characteristics and outcomes by EVD status. RESULTS There were 192 suspected cases: 67 (34.9%) EVD-positive, 118 (61.5%) EVD-negative, and 7 (3.6%) EVD status unknown. Women with EVD had increased odds of death (OR 10.22; 95% CI, 4.87-21.46) and spontaneous abortion (OR 4.93; 95% CI, 1.79-13.55) compared with those without EVD. Women without EVD had a high frequency of death (30.2%) and stillbirths (65.9%). One of 14 neonates born following EVD-negative and five of six neonates born following EVD-positive pregnancies died. CONCLUSION EVD-positive and EVD-negative women with suspected EVD had poor outcomes, highlighting the need for increased attention and resources focused on maternal and perinatal health during an urgent public health response. Capturing pregnancy status in nationwide surveillance of EVD can help improve understanding of disease burden and design effective interventions.
Collapse
Affiliation(s)
- Meghan Lyman
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jonetta Johnson Mpofu
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.,US Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Fatma Soud
- Prevention Care and Treatment Branch, Centers for Disease Control and Prevention, c/o American Embassy, Lusaka, Zambia
| | - Titilope Oduyebo
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sascha Ellington
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gabriel W Schlough
- West African Medical Missions Inc, Freetown, Sierra Leone.,Partners in Health, Freetown, Sierra Leone
| | | | - Jevon McFadden
- Division of State and Local Readiness, Centers for Disease Control and Prevention assigned to the Michigan department of Community Health, Lansing, MI, USA
| | - Diane Morof
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.,US Public Health Service Commissioned Corps, Rockville, MD, USA
| |
Collapse
|
5
|
Dilley KA, Voorhies AA, Luthra P, Puri V, Stockwell TB, Lorenzi H, Basler CF, Shabman RS. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing. PLoS One 2017. [PMID: 28636653 PMCID: PMC5479518 DOI: 10.1371/journal.pone.0178717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.
Collapse
Affiliation(s)
- Kari A. Dilley
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (RSS); (KAD)
| | - Alexander A. Voorhies
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Priya Luthra
- Center for Microbial Pathogenesis, Georgia State University, Atlanta, Georgia, United States of America
| | - Vinita Puri
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Timothy B. Stockwell
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Hernan Lorenzi
- Infectious Disease Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Georgia State University, Atlanta, Georgia, United States of America
| | - Reed S. Shabman
- Virology Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (RSS); (KAD)
| |
Collapse
|
6
|
Evaluation of the Activity of Lamivudine and Zidovudine against Ebola Virus. PLoS One 2016; 11:e0166318. [PMID: 27902714 PMCID: PMC5130197 DOI: 10.1371/journal.pone.0166318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
Abstract
In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 μM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 μg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.
Collapse
|
7
|
Miller JL, Spiro SG, Dowall SD, Taylor I, Rule A, Alonzi DS, Sayce AC, Wright E, Bentley EM, Thom R, Hall G, Dwek RA, Hewson R, Zitzmann N. Minimal In Vivo Efficacy of Iminosugars in a Lethal Ebola Virus Guinea Pig Model. PLoS One 2016; 11:e0167018. [PMID: 27880800 PMCID: PMC5120828 DOI: 10.1371/journal.pone.0167018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 11/29/2022] Open
Abstract
The antiviral properties of iminosugars have been reported previously in vitro and in small animal models against Ebola virus (EBOV); however, their effects have not been tested in larger animal models such as guinea pigs. We tested the iminosugars N-butyl-deoxynojirimycin (NB-DNJ) and N-(9-methoxynonyl)-1deoxynojirimycin (MON-DNJ) for safety in uninfected animals, and for antiviral efficacy in animals infected with a lethal dose of guinea pig adapted EBOV. 1850 mg/kg/day NB-DNJ and 120 mg/kg/day MON-DNJ administered intravenously, three times daily, caused no adverse effects and were well tolerated. A pilot study treating infected animals three times within an 8 hour period was promising with 1 of 4 infected NB-DNJ treated animals surviving and the remaining three showing improved clinical signs. MON-DNJ showed no protective effects when EBOV-infected guinea pigs were treated. On histopathological examination, animals treated with NB-DNJ had reduced lesion severity in liver and spleen. However, a second study, in which NB-DNJ was administered at equally-spaced 8 hour intervals, could not confirm drug-associated benefits. Neither was any antiviral effect of iminosugars detected in an EBOV glycoprotein pseudotyped virus assay. Overall, this study provides evidence that NB-DNJ and MON-DNJ do not protect guinea pigs from a lethal EBOV-infection at the dose levels and regimens tested. However, the one surviving animal and signs of improvements in three animals of the NB-DNJ treated cohort could indicate that NB-DNJ at these levels may have a marginal beneficial effect. Future work could be focused on the development of more potent iminosugars.
Collapse
Affiliation(s)
- Joanna L. Miller
- Antiviral Research Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- * E-mail: (NZ); (JLM)
| | - Simon G. Spiro
- Antiviral Research Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Royal Veterinary College, London, United Kingdom
| | | | - Irene Taylor
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Antony Rule
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Dominic S. Alonzi
- Antiviral Research Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Andrew C. Sayce
- Antiviral Research Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Edward Wright
- Viral Pseudotype Unit, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Emma M. Bentley
- Viral Pseudotype Unit, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Ruth Thom
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Graham Hall
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Raymond A. Dwek
- Antiviral Research Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Nicole Zitzmann
- Antiviral Research Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- * E-mail: (NZ); (JLM)
| |
Collapse
|
8
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2016; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA
- Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA
- Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
9
|
Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses. Proc Natl Acad Sci U S A 2015; 112:14682-7. [PMID: 26575624 DOI: 10.1073/pnas.1508095112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylserine (PS) receptors contribute to two crucial biological processes: apoptotic clearance and entry of many enveloped viruses. In both cases, they recognize PS exposed on the plasma membrane. Here we demonstrate that phosphatidylethanolamine (PE) is also a ligand for PS receptors and that this phospholipid mediates phagocytosis and viral entry. We show that a subset of PS receptors, including T-cell immunoglobulin (Ig) mucin domain protein 1 (TIM1), efficiently bind PE. We further show that PE is present in the virions of flaviviruses and filoviruses, and that the PE-specific cyclic peptide lantibiotic agent Duramycin efficiently inhibits the entry of West Nile, dengue, and Ebola viruses. The inhibitory effect of Duramycin is specific: it inhibits TIM1-mediated, but not L-SIGN-mediated, virus infection, and it does so by blocking virus attachment to TIM1. We further demonstrate that PE is exposed on the surface of apoptotic cells, and promotes their phagocytic uptake by TIM1-expressing cells. Together, our data show that PE plays a key role in TIM1-mediated virus entry, suggest that disrupting PE association with PS receptors is a promising broad-spectrum antiviral strategy, and deepen our understanding of the process by which apoptotic cells are cleared.
Collapse
|
10
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015; 4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/23/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested in vitro and had EC 50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA.,Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA.,Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|
11
|
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015; 4:1091. [PMID: 26834994 PMCID: PMC4706063 DOI: 10.12688/f1000research.7217.3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
The search for small molecule inhibitors of Ebola virus (EBOV) has led to several high throughput screens over the past 3 years. These have identified a range of FDA-approved active pharmaceutical ingredients (APIs) with anti-EBOV activity
in vitro and several of which are also active in a mouse infection model. There are millions of additional commercially-available molecules that could be screened for potential activities as anti-EBOV compounds. One way to prioritize compounds for testing is to generate computational models based on the high throughput screening data and then virtually screen compound libraries. In the current study, we have generated Bayesian machine learning models with viral pseudotype entry assay and the EBOV replication assay data. We have validated the models internally and externally. We have also used these models to computationally score the MicroSource library of drugs to select those likely to be potential inhibitors. Three of the highest scoring molecules that were not in the model training sets, quinacrine, pyronaridine and tilorone, were tested
in vitro and had EC
50 values of 350, 420 and 230 nM, respectively. Pyronaridine is a component of a combination therapy for malaria that was recently approved by the European Medicines Agency, which may make it more readily accessible for clinical testing. Like other known antimalarial drugs active against EBOV, it shares the 4-aminoquinoline scaffold. Tilorone, is an investigational antiviral agent that has shown a broad array of biological activities including cell growth inhibition in cancer cells, antifibrotic properties, α7 nicotinic receptor agonist activity, radioprotective activity and activation of hypoxia inducible factor-1. Quinacrine is an antimalarial but also has use as an anthelmintic. Our results suggest data sets with less than 1,000 molecules can produce validated machine learning models that can in turn be utilized to identify novel EBOV inhibitors
in vitro.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, Fuquay-Varina, NC, 27526, USA.,Collaborations Pharmaceuticals Inc, Fuquay-Varina, NC, 27526, USA.,Collaborative Drug Discovery, Burlingame, CA, 94010, USA
| | - Joel S Freundlich
- Departments of Pharmacology & Physiology and Medicine, Center for Emerging and Reemerging Pathogens, UMDNJ, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex M Clark
- Molecular Materials Informatics, Inc., Montreal, 94025, Canada
| | - Manu Anantpadma
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert A Davey
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | | |
Collapse
|