1
|
Kuhn JH, Schmaljohn CS. Of mice and Mike-An underappreciated Ebola virus disease model may have paved the road for future filovirology. Antiviral Res 2023; 210:105522. [PMID: 36592667 PMCID: PMC9852096 DOI: 10.1016/j.antiviral.2022.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
In 1998, Mike Bray and colleagues published the first immunocompetent laboratory mouse model of Ebola virus disease. Often labeled by peer reviewers as inferior to large nonhuman primate efforts, this model initially laid the foundation for the recent establishment of panel-derived cross-bred and humanized mouse models and a golden hamster model. Nonhuman primate research has always been associated with ethical concerns and is sometimes deemed scientifically questionable due to the necessarily low animal numbers in individual studies. Independent of these concerns, the now-global severe shortage of commercially available large nonhuman primates may pragmatically push research toward increased and improved rodent modeling that may altogether replace nonhuman primate studies in the short term as well as in an optimal future.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
2
|
COVID-19 engages clinical markers for the management of cancer and cancer-relevant regulators of cell proliferation, death, migration, and immune response. Sci Rep 2021; 11:5228. [PMID: 33664395 PMCID: PMC7933131 DOI: 10.1038/s41598-021-84780-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical reports show that the management of cancer patients infected with SARS-CoV-2 requires modifications. Understanding of cancer-relevant mechanisms engaged by the virus is essential for the evidence-based management of cancer. The network of SARS-CoV-2 regulatory mechanisms was used to study potential engagement of oncogenes, tumor suppressors, other regulators of tumorigenesis and clinical markers used in the management of cancer patients. Our network analysis confirms links between COVID-19 and tumorigenesis that were predicted in epidemiological reports. The COVID-19 network shows the involvement of tumorigenesis regulators and clinical markers. Regulators of cell proliferation, death, migration, and the immune system were retrieved. Examples are pathways initiated by EGF, VEGF, TGFβ and FGF. The SARS-CoV-2 network engages markers for diagnosis, prognosis and selection of treatment. Intersection with cancer diagnostic signatures supports a potential impact of the virus on tumorigenesis. Clinical observations show the diversity of symptoms correlating with biological processes and types of cells engaged by the virus, e.g. epithelial, endothelial, smooth muscle, glial and immune system cells. Our results describe an extensive engagement of cancer-relevant mechanisms and clinical markers by COVID-19. Engagement by the virus of clinical markers provides a rationale for clinical decisions based on these markers.
Collapse
|
3
|
Stancioiu F, Papadakis GZ, Kteniadakis S, Izotov BN, Coleman MD, Spandidos DA, Tsatsakis A. A dissection of SARS‑CoV2 with clinical implications (Review). Int J Mol Med 2020; 46:489-508. [PMID: 32626922 PMCID: PMC7307812 DOI: 10.3892/ijmm.2020.4636] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
We are being confronted with the most consequential pandemic since the Spanish flu of 1918‑1920 to the extent that never before have 4 billion people quarantined simultaneously; to address this global challenge we bring to the forefront the options for medical treatment and summarize SARS‑CoV2 structure and functions, immune responses and known treatments. Based on literature and our own experience we propose new interventions, including the use of amiodarone, simvastatin, pioglitazone and curcumin. In mild infections (sore throat, cough) we advocate prompt local treatment for the naso‑pharynx (inhalations; aerosols; nebulizers); for moderate to severe infections we propose a tried‑and‑true treatment: the combination of arginine and ascorbate, administered orally or intravenously. The material is organized in three sections: i) Clinical aspects of COVID‑19; acute respiratory distress syndrome (ARDS); known treatments; ii) Structure and functions of SARS‑CoV2 and proposed antiviral drugs; iii) The combination of arginine‑ascorbate.
Collapse
Affiliation(s)
| | | | | | - Boris Nikovaevich Izotov
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia
| | - Michael D. Coleman
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK
| | | | - Aristidis Tsatsakis
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Zimmerman MG, Bowen JR, McDonald CE, Pulendran B, Suthar MS. West Nile Virus Infection Blocks Inflammatory Response and T Cell Costimulatory Capacity of Human Monocyte-Derived Dendritic Cells. J Virol 2019; 93:e00664-19. [PMID: 31534040 PMCID: PMC6854506 DOI: 10.1128/jvi.00664-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus and the leading cause of mosquito-borne encephalitis in the United States. Recent studies in humans have found that dysfunctional T cell responses strongly correlate with development of severe WNV neuroinvasive disease. However, the contributions of human dendritic cells (DCs) in priming WNV-specific T cell immunity remains poorly understood. Here, we demonstrate that human monocyte derived DCs (moDCs) support productive viral replication following infection with a pathogenic strain of WNV. Antiviral effector gene transcription was strongly induced during the log phase of viral growth, while secretion of type I interferons (IFN) occurred with delayed kinetics. Activation of RIG-I like receptor (RLR) or type I IFN signaling prior to log phase viral growth significantly diminished viral replication, suggesting that early activation of antiviral programs can block WNV infection. In contrast to the induction of antiviral responses, WNV infection did not promote transcription or secretion of proinflammatory (interleukin-6 [IL-6], granulocyte-macrophage colony-stimulating factor [GM-CSF], CCL3, CCL5, and CXCL9) or T cell modulatory (IL-4, IL-12, and IL-15) cytokines. There was also minimal induction of molecules associated with antigen presentation and T cell priming, including the costimulatory molecules CD80, CD86, and CD40. Functionally, WNV-infected moDCs dampened allogenic CD4 and CD8 T cell activation and proliferation. Combining these observations, we propose a model whereby WNV subverts human DC activation to compromise priming of WNV-specific T cell immunity.IMPORTANCE West Nile virus (WNV) is an encephalitic flavivirus that remains endemic in the United States. Previous studies have found dysfunctional T cell responses correlate to severe disease outcomes during human WNV infection. Here, we sought to better understand the ability of WNV to program human dendritic cells (DCs) to prime WNV-specific T cell responses. While productive infection of monocyte-derived DCs activated antiviral and type I interferon responses, molecules associated with inflammation and programming of T cells were minimally induced. Functionally, WNV-infected DCs dampened T cell activation and proliferation during an allogeneic response. Combined, our data support a model whereby WNV infection of human DCs compromises WNV-specific T cell immunity.
Collapse
Affiliation(s)
- Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - James R Bowen
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Circe E McDonald
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Carlin AF, Shresta S. Genome-wide approaches to unravelling host-virus interactions in Dengue and Zika infections. Curr Opin Virol 2019; 34:29-38. [PMID: 30576956 PMCID: PMC6476700 DOI: 10.1016/j.coviro.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022]
Abstract
Genomics approaches are increasingly utilized to probe host-viral interactions and identify mechanisms of viral pathogenesis and host-subversion. Here we review recent studies that utilize Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 screens, transcriptomics and epigenomics to gain insight into Dengue and Zika virus infections in humans. We discuss the benefits and limitations of recently utilized techniques that separate virally infected cells from neighboring uninfected cells to identify the mechanisms by which these viruses regulate host responses. We conclude by discussing how these approaches can best advance our understanding of Dengue and Zika virus pathogenesis in humans.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States.
| | - Sujan Shresta
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States; Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, United States.
| |
Collapse
|
6
|
Quicke KM, Diamond MS, Suthar MS. Negative regulators of the RIG-I-like receptor signaling pathway. Eur J Immunol 2017; 47:615-628. [PMID: 28295214 DOI: 10.1002/eji.201646484] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
Abstract
Upon recognition of specific molecular patterns on microbes, host cells trigger an innate immune response, which culminates in the production of type I interferons, proinflammatory cytokines and chemokines, and restricts pathogen replication and spread within the host. At each stage of this response, there are stimulatory and inhibitory signals that regulate the magnitude, quality, and character of the response. Positive regulation promotes an antiviral state to control and eventually clear infection, whereas negative regulation dampens inflammation and prevents immune-mediated tissue damage. An overexuberant innate response can lead to cell and tissue destruction, and the development of spontaneous autoimmunity. The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), RIG-I and melanoma differentiation-associated gene 5 (MDA5), belong to a family of cytosolic host RNA helicases that recognize distinct nonself RNA signatures and trigger innate immune responses against several RNA viruses by signaling through the essential adaptor protein mitochondrial antiviral signaling (MAVS). The RLR signaling pathway is tightly regulated to maximize antiviral immunity and minimize immune-mediated pathology. This review highlights contemporary findings on negative regulators of the RLR signaling pathway, with specific focus on the proteins and biological processes that directly regulate RIG-I, MDA5 and MAVS signaling function.
Collapse
Affiliation(s)
- Kendra M Quicke
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Mehul S Suthar
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|