1
|
Steel R, Hamed M, Haugom JT, Ho T, Kenner N, Malfavon-Borja J, Morgans S, Salek SA, Seylani A, Jancovich JK. Age- and dose-dependent susceptibility of axolotls (Ambystoma mexicanum) by bath exposure to Ambystoma tigrinum virus (ATV). Virology 2023; 588:109909. [PMID: 37879268 PMCID: PMC11225570 DOI: 10.1016/j.virol.2023.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Ranaviruses are large, dsDNA viruses that have significant ecological and economic impact on cold-blooded vertebrates. However, our understanding of the viral proteins and subsequent host immune response(s) that impact susceptibility to infection and disease is not clear. The ranavirus Ambystoma tigrinum virus (ATV), originally isolated from the Sonoran tiger salamander (Ambystoma mavortium stebbinsi), is highly pathogenic at low doses of ATV at all tiger salamander life stages and this model has been used to explore the host-pathogen interactions of ATV infection. However, inconsistencies in the availability of laboratory reared larval tiger salamanders required us to look at the well characterized axolotl (A. mexicanum) as a model for ATV infection. Data obtained from five infection experiments over different developmental timepoints suggest that axolotls are susceptible to ATV in an age- and dose-dependent manner. These data support the use of the ATV-axolotl model to further explore the host-pathogen interactions of ranavirus infections.
Collapse
Affiliation(s)
- Riley Steel
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Michelle Hamed
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Josefine T Haugom
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Trang Ho
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Nathaniel Kenner
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Joanna Malfavon-Borja
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Scott Morgans
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Savannah A Salek
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Allen Seylani
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - James K Jancovich
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA.
| |
Collapse
|
2
|
Zhang H, Qi H, Weng S, He J, Dong C. Deleting ORF71L of infectious spleen and kidney necrosis virus (ISKNV) resulted in virulence attenuation in Mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2022; 123:335-347. [PMID: 35217194 DOI: 10.1016/j.fsi.2022.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus, infects a variety of teleost fish species and causes substantial losses in the aquaculture industry worldwide. ISKNV ORF71L is 1611 bp in length, encodes a 537-amino-acid peptide and was previously identified as a viral structural protein in the ISKNV virion. In this study, the ORF71L deletion mutant virus strain ISKNV-Δ71 was obtained through a homologous recombination approach. The multistep growth curves showed that ISKNV-Δ71 replication was faster than ISKNV-WT replication in mandarin fish fry cells (MFF-1 cells) before 48 h post-infection (hpi). The cumulative mortality of ISKNV-Δ71-infected mandarin fish (Siniperca chuatsi) was lower than that of fish infected with ISKNV-WT. The copy numbers of viral genome equivalents (GEs) in ISKNV-Δ71-infected mandarin fish spleens were also lower than those in ISKNV-WT-infected spleens. Deletion of ORF71L resulted in ISKNV virulence attenuation in mandarin fish. Furthermore, we found that the number of melanomacrophage centers (MMCs) in ISKNV-Δ71-infected mandarin fish spleens was higher than that in ISKNV-WT-infected mandarin fish spleens. Transcriptomic analysis showed that the cytokine-cytokine receptor interaction pathway had the most significant change between ISKNV-Δ71- and ISKNV-WT-infected MFF-1 cells. These results indicated ORF71L is a virulence-related gene of ISKNV. ORF71L could be considered as a potential target for the development of engineered attenuated live vaccines via multigene deletion or as a potential insertion site for exogenous protein expression.
Collapse
Affiliation(s)
- Hetong Zhang
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hemei Qi
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
3
|
Allen AG, Morgans S, Smith E, Aron MM, Jancovich JK. The Ambystoma tigrinum virus (ATV) RNase III gene can modulate host PKR activation and interferon production. Virology 2017; 511:300-308. [PMID: 28844332 DOI: 10.1016/j.virol.2017.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The iridovirus RNase III gene is one of 26 conserved core genes among the family Iridoviridae. Initial studies suggest this viral protein functions to suppress RNA interference pathways that may attack viral RNA during infection. Therefore, to determine if the Ambystoma tigrinum virus (ATV) RNase III-like gene (ORF 25R) can modulate the host innate immune response fish and human cells ectopically expressing 25R were treated with polyI:C and monitored for interferon synthesis and phosphorylation of eIF2α and PKR. We found a decrease in cellular IFN production and modulation of the PKR pathway. In addition, ATV deleted of the RNase III gene (ATVΔ25R) shows reduced pathogenicity in tiger salamanders. Collectively our data suggest that the ATV 25R protein is a pathogenesis factor that may function to help evade the host's immune response by masking activators of the IFN pathway.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Scott Morgans
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Eric Smith
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Mariah M Aron
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - James K Jancovich
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA.
| |
Collapse
|
4
|
Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB. Ranavirus phylogenomics: Signatures of recombination and inversions among bullfrog ranaculture isolates. Virology 2017; 511:330-343. [PMID: 28803676 DOI: 10.1016/j.virol.2017.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Ranaviruses are emerging pathogens of fish, amphibians, and reptiles that threaten aquatic animal industries and wildlife worldwide. Our objective was to genetically characterize ranaviruses isolated during separate bullfrog Lithobates catesbeianus die-offs that occurred eight years apart on the same North American farm. The earlier outbreak was due to a highly pathogenic strain of common midwife toad virus (CMTV) previously known only from Europe and China. The later outbreak was due to a chimeric ranavirus that displayed a novel genome arrangement and a DNA backbone typical for Frog virus 3 (FV3) strains except for interspersed fragments acquired through recombination with the CMTV isolated earlier. Both bullfrog ranaviruses are more pathogenic than wild-type FV3 suggesting recombination may have resulted in the increased pathogenicity observed in the ranavirus isolated in the later outbreak. Our study underscores the role international trade in farmed bullfrogs may have played in the global dissemination of highly pathogenic ranaviruses.
Collapse
Affiliation(s)
- Sieara C Claytor
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA
| | | | | | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samantha Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA.
| |
Collapse
|
5
|
Yu Y, Huang Y, Ni S, Zhou L, Liu J, Zhang J, Zhang X, Hu Y, Huang X, Qin Q. Singapore grouper iridovirus (SGIV) TNFR homolog VP51 functions as a virulence factor via modulating host inflammation response. Virology 2017; 511:280-289. [PMID: 28689858 DOI: 10.1016/j.virol.2017.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Virus encoded tumor necrosis factor receptor (TNFR) homologues are usually involved in immune evasion by regulating host immune response or cell death. Singapore grouper iridovirus (SGIV) is a novel ranavirus which causes great economic losses in aquaculture industry. Previous studies demonstrated that SGIV VP51, a TNFR-like protein regulated apoptotic process in VP51 overexpression cells. Here, we developed a VP51-deleted recombinant virus Δ51-SGIV by replacing VP51 with puroR-GFP. Deletion of VP51 resulted in the decrease of SGIV virulence, evidenced by the reduced replication in vitro and the decreased cumulative mortalities in Δ51-SGIV challenged grouper compared to WT-SGIV. Moreover, VP51 deletion significantly increased virus induced apoptosis, and reduced the expression of pro-inflammatory cytokines in vitro. In addition, the expression of several pro-inflammatory genes were decreased in Δ51-SGIV infected grouper compared to WT-SGIV. Thus, we speculate that SGIV VP51 functions as a critical virulence factor via regulating host cell apoptosis and inflammation response.
Collapse
Affiliation(s)
- Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingcheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yin Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| |
Collapse
|
6
|
Robert J, Jancovich JK. Recombinant Ranaviruses for Studying Evolution of Host-Pathogen Interactions in Ectothermic Vertebrates. Viruses 2016; 8:E187. [PMID: 27399758 PMCID: PMC4974522 DOI: 10.3390/v8070187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Ranaviruses (Iridoviridae) are large DNA viruses that are causing emerging infectious diseases at an alarming rate in both wild and captive cold blood vertebrate species all over the world. Although the general biology of these viruses that presents some similarities with poxvirus is characterized, many aspects of their replication cycles, host cell interactions and evolution still remain largely unclear, especially in vivo. Over several years, strategies to generate site-specific ranavirus recombinant, either expressing fluorescent reporter genes or deficient for particular viral genes, have been developed. We review here these strategies, the main ranavirus recombinants characterized and their usefulness for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - James K Jancovich
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA.
| |
Collapse
|