1
|
A Temperature-Sensitive Recombinant of Avian Coronavirus Infectious Bronchitis Virus Provides Complete Protection against Homologous Challenge. J Virol 2022; 96:e0110022. [PMID: 35972294 PMCID: PMC9472628 DOI: 10.1128/jvi.01100-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.
Collapse
|
2
|
Villa TG, Abril AG, Sánchez S, de Miguel T, Sánchez-Pérez A. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch Microbiol 2021; 203:443-464. [PMID: 32989475 PMCID: PMC7521576 DOI: 10.1007/s00203-020-02040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/29/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
RNA viruses, in general, exhibit high mutation rates; this is mainly due to the low fidelity displayed by the RNA-dependent polymerases required for their replication that lack the proofreading machinery to correct misincorporated nucleotides and produce high mutation rates. This lack of replication fidelity, together with the fact that RNA viruses can undergo spontaneous mutations, results in genetic variants displaying different viral morphogenesis, as well as variation on their surface glycoproteins that affect viral antigenicity. This diverse viral population, routinely containing a variety of mutants, is known as a viral 'quasispecies'. The mutability of their virions allows for fast evolution of RNA viruses that develop antiviral resistance and overcome vaccines much more rapidly than DNA viruses. This also translates into the fact that pathogenic RNA viruses, that cause many diseases and deaths in humans, represent the major viral group involved in zoonotic disease transmission, and are responsible for worldwide pandemics.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - S Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - T de Miguel
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - A Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Keep S, Stevenson-Leggett P, Steyn A, Oade MS, Webb I, Stuart J, Vervelde L, Britton P, Maier HJ, Bickerton E. Temperature Sensitivity: A Potential Method for the Generation of Vaccines against the Avian Coronavirus Infectious Bronchitis Virus. Viruses 2020; 12:E754. [PMID: 32674326 PMCID: PMC7412246 DOI: 10.3390/v12070754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious economically important respiratory pathogen of domestic fowl. Reverse genetics allows for the molecular study of pathogenic determinants to enable rational vaccine design. The recombinant IBV (rIBV) Beau-R, a molecular clone of the apathogenic Beaudette strain, has previously been investigated as a vaccine platform. To determine tissues in which Beau-R could effectively deliver antigenic genes, an in vivo study in chickens, the natural host, was used to compare the pattern of viral dissemination of Beau-R to the pathogenic strain M41-CK. Replication of Beau-R was found to be restricted to soft tissue within the beak, whereas M41-CK was detected in beak tissue, trachea and eyelid up to seven days post infection. In vitro assays further identified that, unlike M41-CK, Beau-R could not replicate at 41 °C, the core body temperature of a chicken, but is able to replicate a 37 °C, a temperature relatable to the very upper respiratory tract. Using a panel of rIBVs with defined mutations in the structural and accessory genes, viral replication at permissive and non-permissive temperatures was investigated, identifying that the Beau-R replicase gene was a determinant of temperature sensitivity and that sub-genomic mRNA synthesis had been affected. The identification of temperature sensitive allelic lesions within the Beau-R replicase gene opens up the possibility of using this method of attenuation in other IBV strains for future vaccine development as well as a method to investigate the functions of the IBV replicase proteins.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Phoebe Stevenson-Leggett
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Angela Steyn
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Michael S. Oade
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Isobel Webb
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Jamie Stuart
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Paul Britton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Helena J. Maier
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| | - Erica Bickerton
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (S.K.); (P.S.-L.); (A.S.); (M.S.O.); (I.W.); (J.S.); (P.B.); (H.J.M.)
| |
Collapse
|
4
|
Souto S, Vázquez-Salgado L, Olveira JG, Bandín I. Amino acidic substitutions in the polymerase N-terminal region of a reassortant betanodavirus strain causing poor adaptation to temperature increase. Vet Res 2019; 50:50. [PMID: 31227007 PMCID: PMC6588924 DOI: 10.1186/s13567-019-0669-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/12/2019] [Indexed: 11/17/2022] Open
Abstract
Nervous necrosis virus (NNV), Genus Betanodavirus, is the causative agent of viral encephalopathy and retinopathy (VER), a neuropathological disease that causes fish mortalities worldwide. The NNV genome is composed of two single-stranded RNA molecules, RNA1 and RNA2, encoding the RNA polymerase and the coat protein, respectively. Betanodaviruses are classified into four genotypes: red-spotted grouper nervous necrosis virus (RGNNV), striped jack nervous necrosis virus (SJNNV), barfin flounder nervous necrosis virus (BFNNV) and tiger puffer nervous necrosis virus (TPNNV). In Southern Europe the presence of RGNNV, SJNNV and their natural reassortants (in both RNA1/RNA2 forms: RGNNV/SJNNV and SJNNV/RGNNV) has been reported. Pathology caused by these genotypes is closely linked to water temperature and the RNA1 segment encoding amino acids 1–445 has been postulated to regulate viral adaptation to temperature. Reassortants isolated from sole (RGNNV/SJNNV) show 6 substitutions in this region when compared with the RGNNV genotype (positions 41, 48, 218, 223, 238 and 289). We have demonstrated that change of these positions to those present in the RGNNV genotype cause low and delayed replication in vitro when compared with that of the wild type strain at 25 and 30 °C. The experimental infections confirmed the impact of the mutations on viral replication because at 25 °C the viral load and the mortality were significantly lower in fish infected with the mutant than in those challenged with the non-mutated virus. It was not possible to challenge fish at 30 °C because of the scarce tolerance of sole to this temperature.
Collapse
Affiliation(s)
- Sandra Souto
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain. .,Unité de Virologie et d'Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Lucía Vázquez-Salgado
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - José G Olveira
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología-Universidade de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Replication capacity and adaptability of a severe fever with thrombocytopenia syndrome virus at different temperatures. PLoS One 2017; 12:e0188462. [PMID: 29190712 PMCID: PMC5708652 DOI: 10.1371/journal.pone.0188462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/07/2017] [Indexed: 12/28/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease caused by the SFTS virus (SFTSV). Although fever and thrombocytopenia are the typical manifestations of SFTS, a specific SFTS case with no fever was observed in Zhejiang, China. In this report, we aimed to explore the probable reason for the absence of fever by analyzing the genetic characteristics and temperature sensitivity (ts) of the SFTSV strain ZJ2013-06, which was isolated from the specific case. Phylogenetically, different clusters of SFTSV strains circulated in Zhejiang. ZJ2013-06 was farthest from ZJ2014-02, an isolate belonging to a Chinese dominant cluster, and nearest to the coastal strain NB24/CHN/2013. Ts tests, performed on Vero cells at 37°C and 39°C, indicated that ZJ2013-06 had restricted replication at 39°C. Its viral loads were substantially reduced at 39°C compared with that at 37°C (approximately 100-fold reduction) and were significantly lower than that of ZJ2014-02 at 39°C (P < 0.01). By adaptive culture at 39°C, the induced strain ZJ2013-06-P7 was obtained. Owing to a reverse mutation (S1616), ZJ2013-06-P7 lost the ts of the original strain, displaying similar replication processes with NB24/CHN/2013. The results indicated that the amino acid residue 1616 was related to the ts characteristics of ZJ2013-06. Our study revealed that ZJ2013-06 was temperature-sensitive and may be related to the absence of fever in our case.
Collapse
|