1
|
Wang Y, Guo H, Lu Y, Yang W, Li T, Ji X. Crystal structure and nucleic acid binding mode of CPV NSP9: implications for viroplasm in Reovirales. Nucleic Acids Res 2024; 52:11115-11127. [PMID: 39287123 PMCID: PMC11472163 DOI: 10.1093/nar/gkae803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cytoplasmic polyhedrosis viruses (CPVs), like other members of the order Reovirales, produce viroplasms, hubs of viral assembly that shield them from host immunity. Our study investigates the potential role of NSP9, a nucleic acid-binding non-structural protein encoded by CPVs, in viroplasm biogenesis. We determined the crystal structure of the NSP9 core (NSP9ΔC), which shows a dimeric organization topologically similar to the P9-1 homodimers of plant reoviruses. The disordered C-terminal region of NSP9 facilitates oligomerization but is dispensable for nucleic acid binding. NSP9 robustly binds to single- and double-stranded nucleic acids, regardless of RNA or DNA origin. Mutagenesis studies further confirmed that the dimeric form of NSP9 is critical for nucleic acid binding due to positively charged residues that form a tunnel during homodimerization. Gel migration assays reveal a unique nucleic acid binding pattern, with the sequential appearance of two distinct complexes dependent on protein concentration. The similar gel migration pattern shared by NSP9 and rotavirus NSP3, coupled with its structural resemblance to P9-1, hints at a potential role in translational regulation or viral genome packaging, which may be linked to viroplasm. This study advances our understanding of viroplasm biogenesis and Reovirales replication, providing insights into potential antiviral drug targets.
Collapse
Affiliation(s)
- Yeda Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Hangtian Guo
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Yuhao Lu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Wanbin Yang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Tinghan Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
2
|
A Fijivirus Major Viroplasm Protein Shows RNA-Stimulated ATPase Activity by Adopting Pentameric and Hexameric Assemblies of Dimers. mBio 2023; 14:e0002323. [PMID: 36786587 PMCID: PMC10128069 DOI: 10.1128/mbio.00023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
Collapse
|
3
|
Llauger G, Monti D, Adúriz M, Romão E, Dumón AD, Mattio MF, Wigdorovitz A, Muyldermans S, Vincke C, Parreño V, Del Vas M. Development of Nanobodies against Mal de Río Cuarto virus major viroplasm protein P9-1 for diagnostic sandwich ELISA and immunodetection. Sci Rep 2021; 11:20013. [PMID: 34625580 PMCID: PMC8501053 DOI: 10.1038/s41598-021-99275-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Mal de Río Cuarto virus (MRCV) is a member of the genus Fijivirus of the family Reoviridae that causes a devastating disease in maize and is persistently and propagatively transmitted by planthopper vectors. Virus replication and assembly occur within viroplasms formed by viral and host proteins. This work describes the isolation and characterization of llama-derived Nanobodies (Nbs) recognizing the major viral viroplasm component, P9-1. Specific Nbs were selected against recombinant P9-1, with affinities in the nanomolar range as measured by surface plasmon resonance. Three selected Nbs were fused to alkaline phosphatase and eGFP to develop a sandwich ELISA test which showed a high diagnostic sensitivity (99.12%, 95% CI 95.21-99.98) and specificity (100%, 95% CI 96.31-100) and a detection limit of 0.236 ng/ml. Interestingly, these Nanobodies recognized different P9-1 conformations and were successfully employed to detect P9-1 in pull-down assays of infected maize extracts. Finally, we demonstrated that fusions of the Nbs to eGFP and RFP allowed the immunodetection of virus present in phloem cells of leaf thin sections. The Nbs developed in this work will aid the study of MRCV epidemiology, assist maize breeding programs, and be valuable tools to boost fundamental research on viroplasm structure and maturation.
Collapse
Affiliation(s)
- Gabriela Llauger
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Demián Monti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Matías Adúriz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Ema Romão
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Analía Delina Dumón
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - María Fernanda Mattio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Córdoba, Argentina
| | - Andrés Wigdorovitz
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Serge Muyldermans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Cécile Vincke
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Viviana Parreño
- INCUINTA, Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA INTA, UEDD INTA/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
de Haro LA, Dumón AD, Mattio MF, Argüello Caro EB, Llauger G, Zavallo D, Blanc H, Mongelli VC, Truol G, Saleh MC, Asurmendi S, del Vas M. Mal de Río Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector. FRONTIERS IN PLANT SCIENCE 2017; 8:766. [PMID: 28539933 PMCID: PMC5423983 DOI: 10.3389/fpls.2017.00766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/24/2017] [Indexed: 05/03/2023]
Abstract
Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.
Collapse
Affiliation(s)
- Luis A. de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Analía D. Dumón
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - María F. Mattio
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | | | - Gabriela Llauger
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
| | - Hervé Blanc
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Vanesa C. Mongelli
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Graciela Truol
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología AgropecuariaCórdoba, Argentina
| | - María-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, CNRS UMR 3569Paris, France
| | - Sebastián Asurmendi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Mariana del Vas
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, HurlinghamBuenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|