1
|
Li Y, Ma Y, Li J, Lu Y, Liu H, Gao M, Cao J. Enhanced glioma cell death with ZnO nanorod flowers and temozolomide combination therapy through autophagy and mitophagy pathways. Biomed Pharmacother 2024; 178:117149. [PMID: 39047423 DOI: 10.1016/j.biopha.2024.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the application of engineered NMts has significantly contributed to various biomedical fields. ZnO NMts (ZnO NMts) are widely utilized due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anti-cancer applications. This study aims to study the impact of ZnO Nanorod flowers (ZnO NRfs) and their combination with temozolomide (TMZ) on glioma cells. Normal mouse microglia (BV2) will be used as a control to assess the effects on mouse glioma cells (G422) and human glioma cells (LN229). The effects of these substances were evaluated on G422 and LN229 cells through various parameters such as IC50 value, Zn2+ accumulation, ROS production, apoptosis, mitochondrial membrane potential (MMP) depolarization, and examination of organelles like mitochondria and lysosomes. Additionally, hypoxia-inducible factor-1α (HIF-1α), endothelial cell PAS domain protein 1 (EPAS1), autophagy markers (LC3), mitophagy and phagocytosis marker (BNIP3) were assessed. The results demonstrated that the combination of ZnO NRfs and TMZ could influence the expression of HIF-1α, EPAS1, LC3, and BNIP3 proteins, leading to mitophagy in glioma cells. This combination treatment has the potential to effectively eliminate glioma cells by activating the mitophagy pathway, which provides a good prospect for the clinical treatment of glioma.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China.
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China.
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, 730000, China
| | - Yan Lu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiying Liu
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| | - Min Gao
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| | - Junqin Cao
- College of Veterinary Medicine, Gansu Agricultural University, 730070, China
| |
Collapse
|
2
|
Li Y, Lu Y, Li J, Li M, Gou H, Sun X, Xu X, Song B, Li Z, Ma Y. Screening of low-toxic zinc oxide nanomaterials and study the apoptosis mechanism of NSC-34 cells. Biotechnol J 2024; 19:e2300443. [PMID: 38403432 DOI: 10.1002/biot.202300443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
With the increasing application of ZnO nanomaterials (ZnO-NMts) in the biomedical field, it is crucial to assess their potential risks to humans and the environment. Therefore, this study aimed to screen for ZnO-NMts with low toxicity and establish safe exposure limits, and investigate their mechanisms of action. The study synthesized 0D ZnO nanoparticles (ZnO NPs) and 3D ZnO nanoflowers (ZnO Nfs) with different morphologies using a hydrothermal approach for comparative research. The ZnO-NMts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Mouse brain neuronal cells (NSC-34) were incubated with ZnO NMts for 6, 12, and 24 h, and the cell morphology was observed using TEM. The toxic effects of ZnO Nfs on NSC-34 cells were studied using CCK-8 cell viability detection, reactive oxygen species (ROS) measurement, caspase-3 activity detection, Annexin V-FITC/PI apoptosis assay, and mitochondrial membrane potential (Δφm) measurement. The results of the research showed that ZnO-NMts caused cytoplasmic vacuolization and nuclear pyknosis. After incubating cells with 12.5 µg mL-1 ZnO-NMts for 12 h, ZnO NRfs exhibited the least toxicity and ROS levels. Additionally, there was a significant increase in caspase-3 activity, depolarization of mitochondrial membrane potential (Δφm), and the highest rate of early apoptosis.This study successfully identified ZnO NRfs with the lowest toxicity and determined the safe exposure limit to be < 12.5 µg mL-1 (12 h). These findings will contribute to the clinical use of ZnO NRfs with low toxicity and provide a foundation for further research on their potential applications in brain disease treatment.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Yan Lu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Gansu, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Xiaolin Sun
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Xiaoli Xu
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Beibei Song
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Zhiyu Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Jiang X, Yang M, Liu J. Capping Gold Nanoparticles to Achieve a Protein-like Surface for Loop-Mediated Isothermal Amplification Acceleration and Ultrasensitive DNA Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27666-27674. [PMID: 35687651 DOI: 10.1021/acsami.2c06061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a popular DNA amplification method. Gold nanoparticles (AuNPs) were reported to enhance the efficiency of LAMP, although the underlying mechanism remained elusive. Since AuNPs strongly adsorb a range of ligands, preadsorbed ligands cannot be easily displaced. In this work, we systematically investigated the effect of surface-modified AuNPs on LAMP by varying the order of mixing of AuNPs with each reagent in the LAMP system (Mg2+, template DNA, dNTPs, primers, and polymerase). Mixing the AuNPs with the primers delayed the LAMP based on SYBR green I fluorescence. While other orders of mixing had little effect, all accelerated the reaction. We then tested other common ligands including polymers (polyethylene glycol and polyvinylpyrrolidone), inorganic ions (Br-), proteins, glutathione (GSH), and DNA (A15) on AuNP-LAMP. The boosted AuNP performance on LAMP was most obvious when the AuNPs formed a protein-like surface. Finally, using GSH-capped AuNPs, a detection limit of around 100 copies/μL-1 of target DNA was achieved. This work has identified a ligand-capped AuNP strategy to boost LAMP and yielded a higher sensitivity in DNA sensing, which also deepens our understanding of AuNP-assisted LAMP.
Collapse
Affiliation(s)
- Xingxing Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Isothermal nucleic acid amplification technology for rapid detection of virus. Crit Rev Biotechnol 2022; 43:415-432. [PMID: 35156471 DOI: 10.1080/07388551.2022.2030295] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While the research field and industrial market of in vitro diagnosis (IVD) thrived during and post the COVID-19 pandemic, the development of isothermal nucleic acid amplification test (INAAT) based rapid diagnosis was engendered in a global wised large measure as a problem-solving exercise. This review systematically analyzed the recent advances of INAAT strategies with practical case for the real-world scenario virus detection applications. With the qualities that make INAAT systems useful for making diagnosis relevant decisions, the key performance indicators and the cost-effectiveness of enzyme-assisted methods and enzyme-free methods were compared. The modularity of nucleic acid amplification reactions that can lead to thresholding signal amplifications using INAAT reagents and their methodology design were examined, alongside the potential application with rapid test platform/device integration. Given that clinical practitioners are, by and large, unaware of many the isothermal nucleic acid test advances. This review could bridge the arcane research field of different INAAT systems and signal output modalities with end-users in clinic when choosing suitable test kits and/or methods for rapid virus detection.
Collapse
Affiliation(s)
- Zhenting Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Xiaowen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Huhu Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Fanpu Ji
- Department of Infectious Diseases, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Nanchong, China
| | - Dan Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
| | - Xiaoping Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Nanchong, China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Nanchong, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanchong, China
| |
Collapse
|
5
|
Zhou X, Ge S, Sun Y, Ran M, Liu Y, Mao Y, Cao X. Highly sensitive SERS assay of genetically modified organisms in maize via a nanoflower substrate coupled with hybridization chain reaction amplification. NEW J CHEM 2021. [DOI: 10.1039/d1nj03913j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel biosensor based on a high-density “hot spot” SERS substrate coupled with HCR amplification strategy was developed for the ultrasensitive detection of genetically modified organisms in maize.
Collapse
Affiliation(s)
- Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Menglin Ran
- The First Clinical College, Dalian Medical University, Dalian, P. R. China
| | - Yifan Liu
- The First Clinical College, Dalian Medical University, Dalian, P. R. China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
6
|
Upadhyay A, Yang H, Zaman B, Zhang L, Wu Y, Wang J, Zhao J, Liao C, Han Q. ZnO Nanolower-Based NanoPCR as an Efficient Diagnostic Tool for Quick Diagnosis of Canine Vector-Borne Pathogens. Pathogens 2020; 9:pathogens9020122. [PMID: 32075178 PMCID: PMC7169380 DOI: 10.3390/pathogens9020122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Polymerase chain reaction (PCR) is a unique technique in molecular biology and biotechnology for amplifying target DNA strands, and is also considered as a gold standard for the diagnosis of many canine diseases as well as many other infectious diseases. However, PCR still faces many challenges and issues related to its sensitivity, specificity, efficiency, and turnaround time. To address these issues, we described the use of unique ZnO nanoflowers in PCR reaction and an efficient ZnO nanoflower-based PCR (nanoPCR) for the molecular diagnosis of canine vector-borne diseases (CVBDs). A total of 1 mM of an aqueous solution of ZnO nanoflowers incorporated in PCR showed a significant enhancement of the PCR assay with respect to its sensitivity and specificity for the diagnosis of two important CVBDs, Babesia canis vogeli and Hepatozoon canis. Interestingly, it drastically reduced the turnaround time of the PCR assay without compromising the yield of the amplified DNA, which can be of benefit for veterinary practitioners for the improved management of diseases. This can be attributed to the favorable adsorption of ZnO nanoflowers to the DNA and thermal conductivity of ZnO nanoflowers. The unique ZnO nanoflower-assisted nanoPCR greatly improved the yield, purity, and quality of the amplified products, but the mechanism behind these properties and the effects and changes due to the different concentrations of ZnO nanoflowers in the PCR system needs to be further studied.
Collapse
Affiliation(s)
- Archana Upadhyay
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Huan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Material Science and Engineering, Haikou 570228, China;
| | - Bilal Zaman
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Material Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
| | - Jinhua Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
- Correspondence: (C.L.); (Q.H.)
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (A.U.); (L.Z.); (J.W.); (J.Z.)
- Correspondence: (C.L.); (Q.H.)
| |
Collapse
|