1
|
Saraceni PR, Miccoli A, Bada A, Taddei AR, Mazzonna M, Fausto AM, Scapigliati G, Picchietti S. Polystyrene nanoplastics as an ecotoxicological hazard: cellular and transcriptomic evidences on marine and freshwater in vitro teleost models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173159. [PMID: 38761939 DOI: 10.1016/j.scitotenv.2024.173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The contamination of marine and freshwater environments by nanoplastics is considered a global threat for aquatic biota. Taking into account the most recent concentration range estimates reported globally and recognizing a knowledge gap in polystyrene nanoplastics (PS-NPs) ecotoxicology, the present work investigated the harmful effects of 20 nm and 80 nm PS-NPs, at increasing biological complexity, on the rainbow trout Oncorhynchus mykiss RTG-2 and gilthead seabream Sparus aurata SAF-1 cell lines. Twenty nm PS-NPs exerted a greater cytotoxicity than 80 nm ones and SAF-1 were approximately 4-fold more vulnerable to PS-NPs than RTG-2. The engagement of PS-NPs with plasma membranes was accompanied by discernible uptake patterns and morphological alterations along with a nuclear translocation already within a 30-min exposure. Cells were structurally damaged only by the 20 nm PS-NPs in a time-dependent manner as indicated by distinctive features of the execution phase of the apoptotic cell death mechanism such as cell shrinkage, plasma membrane blebbing, translocation of phosphatidylserine to the outer leaflet of the cell membrane and DNA fragmentation. At last, functional analyses unveiled marked transcriptional impairment at both sublethal and lethal doses of 20 nm PS-NPs, with the latter impacting the "Steroid biosynthesis", "TGF-beta signaling pathway", "ECM-receptor interaction", "Focal adhesion", "Regulation of actin cytoskeleton" and "Protein processing in endoplasmic reticulum" pathways. Overall, a distinct ecotoxicological hazard of PS-NPs at environmentally relevant concentrations was thoroughly characterized on two piscine cell lines. The effects were demonstrated to depend on size, exposure time and model, emphasizing the need for a comparative evaluation of endpoints between freshwater and marine ecosystems.
Collapse
Affiliation(s)
- P R Saraceni
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Department of Sustainability, 00123 Rome, Italy
| | - A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125 Ancona, Italy
| | - A Bada
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - A R Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università Snc, 01100 Viterbo, Italy
| | - M Mazzonna
- National Research Council, Institute for Biological Systems (ISB), 00015 Monterotondo, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
2
|
Simón R, Martínez P, González L, Ordás MC, Tafalla C. Differential response of RTGUTGC and RTGILL-W1 rainbow trout epithelial cell lines to viral stimulation. JOURNAL OF FISH DISEASES 2023; 46:433-443. [PMID: 36633210 DOI: 10.1111/jfd.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Mucosal surfaces constitute the main route of entry of pathogens into the host. In fish, these mucosal tissues include, among others, the gastrointestinal tract, the gills and the skin. However, knowledge about the mechanisms of regulation of immunity in these tissues is still scarce, being essential to generate a solid base that allows the development of prevention strategies against these infectious agents. In this work, we have used the RTgutGC and RTgill-W1 epithelial-like cell lines, derived from the gastrointestinal tract and the gill of rainbow trout (Oncorhynchus mykiss), respectively, to investigate the transcriptional response of mucosal epithelial cells to a viral mimic, the dsRNA poly I:C, as well as to two important viral rainbow trout pathogens, namely viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV). Additionally, we have established how the exposure to poly I:C affected the susceptibility of RTgutGC and RTgill-W1 cells to both viruses. Our results reveal important differences in the way these two cell lines respond to viral stimuli, providing interesting information on these cell lines that have emerged in the past years as useful tools to study mucosal responses in fish.
Collapse
Affiliation(s)
- Rocío Simón
- Animal Health Research Center (CISA-INIA-CSIC), Madrid, Spain
| | | | - Lucía González
- Animal Health Research Center (CISA-INIA-CSIC), Madrid, Spain
| | - M Camino Ordás
- Animal Health Research Center (CISA-INIA-CSIC), Madrid, Spain
| | | |
Collapse
|
3
|
Bui-Marinos MP, Todd LA, Wasson MCD, Morningstar BEE, Katzenback BA. Prior induction of cellular antiviral pathways limits frog virus 3 replication in two permissive Xenopus laevis skin epithelial-like cell lines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104200. [PMID: 34237380 DOI: 10.1016/j.dci.2021.104200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Frog virus 3 (FV3) causes mortality in a range of amphibian species. Despite the importance of the skin epithelium as a first line of defence against FV3, the interaction between amphibian skin epithelial cells and FV3 remains largely uncharacterized. Here, we used newly established Xenopus laevis skin epithelial-like cell lines, Xela DS2 and Xela VS2, to study the susceptibility and permissiveness of frog skin epithelial cells to FV3, and the innate immune antiviral and proinflammatory gene regulatory responses of these cells to FV3. Both cell lines are susceptible and permissive to FV3, yet do not exhibit appreciable transcript levels of scavenger receptors thought to be used by FV3 for cellular entry. Xela DS2 and Xela VS2 upregulate antiviral and proinflammatory cytokine transcripts in response to poly(I:C) but not to FV3 or UV-inactivated FV3. Poly(I:C) pretreatment limits FV3 replication and FV3-induced cytopathic effects in both cell lines. Thus, Xela DS2 and Xela VS2 can support FV3 replication, represent in vitro systems to investigate antiviral responses of frog skin epithelial cells, and can serve as novel tools for screening compounds that initiate effective antiviral programs to limit FV3 replication.
Collapse
Affiliation(s)
| | - Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
4
|
Vo NTK, Guerreiro M, Yaparla A, Grayfer L, DeWitte-Orr SJ. Class A Scavenger Receptors Are Used by Frog Virus 3 During Its Cellular Entry. Viruses 2019; 11:E93. [PMID: 30678064 PMCID: PMC6409810 DOI: 10.3390/v11020093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 01/08/2023] Open
Abstract
Frog virus 3 (FV3) is the type species of the genus Ranavirus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes. To date, the cellular receptors that are involved in the FV3 entry process are unknown. Class A scavenger receptors (SR-As) are a family of evolutionarily conserved cell-surface receptors that bind a wide range of chemically distinct polyanionic ligands and can function as cellular receptors for other DNA viruses, including vaccinia virus and herpes simplex virus. The present study aimed to determine whether SR-As are involved in FV3 cellular entry. By using well-defined SR-A competitive and non-competitive ligand-blocking assays and absolute qPCR, we demonstrated that the SR-A competitive ligands drastically reduced the quantities of cell-associated viral loads in frog cells. Moreover, inducing the expression of a human SR-AI in an SR-A null cell line significantly increased FV3⁻cell association. Together, our results indicate that SR-As are utilized by FV3 during the cellular entry process.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
| | - Matthew Guerreiro
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA.
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
5
|
Amphibian ( Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Use of Expanded Repertoires of Type I and Type III Interferon Cytokines. Viruses 2018; 10:v10070372. [PMID: 30018186 PMCID: PMC6070924 DOI: 10.3390/v10070372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/30/2018] [Accepted: 07/07/2018] [Indexed: 12/19/2022] Open
Abstract
While amphibians around the globe are facing catastrophic declines, in part because of infections with pathogens such as the Frog Virus 3 (FV3) ranavirus; the mechanisms governing amphibian susceptibility and resistance to such pathogens remain poorly understood. The type I and type III interferon (IFN) cytokines represent a cornerstone of vertebrate antiviral immunity, while our recent work indicates that tadpoles and adult frogs of the amphibian Xenopus laevis may differ in their IFN responses to FV3. In this respect, it is notable that anuran (frogs and toads) tadpoles are significantly more susceptible to FV3 than adult frogs, and thus, gaining greater insight into the differences in the tadpole and adult frog antiviral immunity would be invaluable. Accordingly, we examined the FV3-elicited expression of a panel of type I and type III IFN genes in the skin (site of FV3 infection) and kidney (principal FV3 target) tissues and isolated cells of X. laevis tadpoles and adult frogs. We also examined the consequence of tadpole and adult frog skin and kidney cell stimulation with hallmark pathogen-associated molecular patterns (PAMPs) on the IFN responses of these cells. Together, our findings indicate that tadpoles and adult frogs mount drastically distinct IFN responses to FV3 as well as to viral and non-viral PAMPs, while these expression differences do not appear to be the result of a distinct pattern recognition receptor expression by tadpoles and adults.
Collapse
|