1
|
Kim MH, Choi B, Jang SY, Choi JS, Kim S, Lee Y, Park S, Kwon SJ, Kang JH, Seo JK. The VP53 protein encoded by RNA2 of a fabavirus, broad bean wilt virus 2, is essential for viral systemic infection. Commun Biol 2024; 7:462. [PMID: 38627534 PMCID: PMC11021446 DOI: 10.1038/s42003-024-06170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Plant viruses evolves diverse strategies to overcome the limitations of their genomic capacity and express multiple proteins, despite the constraints imposed by the host translation system. Broad bean wilt virus 2 (BBWV2) is a widespread viral pathogen, causing severe damage to economically important crops. It is hypothesized that BBWV2 RNA2 possesses two alternative in-frame translation initiation codons, resulting in the production of two largely overlapping proteins, VP53 and VP37. In this study, we aim to investigate the expression and function of VP53, an N-terminally 128-amino-acid-extended form of the viral movement protein VP37, during BBWV2 infection. By engineering various recombinant and mutant constructs of BBWV2 RNA2, here we demonstrate that VP53 is indeed expressed during BBWV2 infection. We also provide evidence of the translation of the two overlapping proteins through ribosomal leaky scanning. Furthermore, our study highlights the indispensability of VP53 for successful systemic infection of BBWV2, as its removal results in the loss of virus infectivity. These insights into the translation mechanism and functional role of VP53 during BBWV2 infection significantly contribute to our understanding of the infection mechanisms employed by fabaviruses.
Collapse
Affiliation(s)
- Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Boram Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Seok-Yeong Jang
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Ji-Soo Choi
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Sora Kim
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Yubin Lee
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Suejin Park
- Department of Horticulture, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Jin-Ho Kang
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Jang-Kyun Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| |
Collapse
|
2
|
Kwon MJ, Kwon SJ, Kim MH, Choi B, Byun HS, Kwak HR, Seo JK. Visual tracking of viral infection dynamics reveals the synergistic interactions between cucumber mosaic virus and broad bean wilt virus 2. Sci Rep 2023; 13:7261. [PMID: 37142679 PMCID: PMC10160061 DOI: 10.1038/s41598-023-34553-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Cucumber mosaic virus (CMV) is one of the most prevalent plant viruses in the world, and causes severe damage to various crops. CMV has been studied as a model RNA virus to better understand viral replication, gene functions, evolution, virion structure, and pathogenicity. However, CMV infection and movement dynamics remain unexplored due to the lack of a stable recombinant virus tagged with a reporter gene. In this study, we generated a CMV infectious cDNA construct tagged with a variant of the flavin-binding LOV photoreceptor (iLOV). The iLOV gene was stably maintained in the CMV genome after more than four weeks of three serial passages between plants. Using the iLOV-tagged recombinant CMV, we visualized CMV infection and movement dynamics in living plants in a time course manner. We also examined whether CMV infection dynamics is influenced by co-infection with broad bean wilt virus 2 (BBWV2). Our results revealed that no spatial interference occurred between CMV and BBWV2. Specifically, BBWV2 facilitated the cell-to-cell movement of CMV in the upper young leaves. In addition, the BBWV2 accumulation level increased after co-infection with CMV.
Collapse
Affiliation(s)
- Min-Jun Kwon
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Myung-Hwi Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Boram Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hee-Seong Byun
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jang-Kyun Seo
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Kim MH, Kwak HR, Choi B, Kwon SJ, Seo JK. Genetic plasticity in RNA2 is associated with pathogenic diversification of broad bean wilt virus 2. Virus Res 2021; 304:198533. [PMID: 34384805 DOI: 10.1016/j.virusres.2021.198533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Broad bean wilt virus 2 (BBWV2) is an evolutionarily successful RNA virus with an extensive host range and worldwide distribution that causes severe damage to crops. While numerous BBWV2 isolates from various plant species have been identified and their genome sequences determined, little information is available on the virulence and symptomatic characteristics corresponding to the genomic sequences. In this study, we provide integrated information on the molecular and pathogenic characteristics of three genetically distant BBWV2 isolates: BBWV2-PC, -LS2, and P3 obtained from Gentiana scabra, Leonurus sibiricus, and Pisum sativum, respectively. Phylogenetic and diversity analyses of the BBWV2 population included 42 isolates from various host species and revealed that RNA2 has higher genetic plasticity than RNA1 and may have evolved under host-imposed constraints. In addition, we generated an infectious cDNA clone of BBWV2-PC RNA2 (pBBWV2-PC-R2). Pseudo-recombination analysis of pBBWV2-PC-R2 further demonstrated that RNA2 determines the pathogenic characteristics of the PC isolate.
Collapse
Affiliation(s)
- Myung-Hwi Kim
- Department of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Integrated Major in Global Smart Farm, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Boram Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jang-Kyun Seo
- Department of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Integrated Major in Global Smart Farm, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
4
|
Tarquini G, Ermacora P, Firrao G. Polymorphisms at the 3'end of the movement protein (MP) gene of grapevine Pinot gris virus (GPGV) affect virus titre and small interfering RNA accumulation in GLMD disease. Virus Res 2021; 302:198482. [PMID: 34119570 DOI: 10.1016/j.virusres.2021.198482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/15/2023]
Abstract
Grapevine Leaf Mottling and Deformation (GLMD) is a grapevine disease that has been associated with a trichovirus, the grapevine Pinot gris virus (GPGV). A wide diversity in the severity of GLMD disease symptoms has been recorded worldwide, but the relationship of this diversity to the sequence variation in the GPGV genome is still a matter of debate. Results from comparative analysis of GPGV genomic sequences have suggested an association of polymorphisms at the 3'-end of the movement protein (MP) with GLMD severity. Here, the 3'-terminus of the MP gene of a GPGV infectious clone derived from an isolate from grapevine showing severe symptoms (fvg-12), was substituted with a 356 bp synthetic DNA fragment having a sequence resembling that of another GPGV isolate (fvg-15), recovered from an asymptomatic grapevine. The clone containing this chimeric construct was root-inoculated in virus-free Kober rootstocks along with the clones containing the fvg-12 and fvg-15 full length sequence. Remarkable differences in virus titre, accumulation of GPGV-derived small interfering RNAs (siRNAs), alterations in the gene expression of boron transporters and, to a lesser extent, in symptom expression were recorded among plants infected with either one of the three GPGV derived clones. In particular, the chimeric clone behaviour was indistinguishable from that of the donor of the small 356 bp fragment and significantly different from the other. Thus, this work experimentally confirmed the critical role of the GPGV-MP C-terminus in determining the fate of the infection, as it had been previously hypothesized on the basis of comparative sequence analysis.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Paolo Ermacora
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy
| | - Giuseppe Firrao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine 33100, Italy; Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.
| |
Collapse
|
5
|
Han SJ, Choi B, Kim MH, Kwon SJ, Kwak HR, Seo JK. Viral Strain-Specific Activation of Pathogen-Associated Molecular Pattern-Triggered Immunity Enhances Symptom Severity in Broad Bean Wilt Virus 2 Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:746543. [PMID: 34721473 PMCID: PMC8549444 DOI: 10.3389/fpls.2021.746543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/24/2021] [Indexed: 05/22/2023]
Abstract
Broad bean wilt virus 2 (BBWV2) is an emerging virus in various economically important crops, especially pepper (Capsicum annuum L.), worldwide. Recently, the emergence of various BBWV2 strains that induce severe symptoms has increased damage to pepper crops. While the symptomatic variations among virus strains should be associated with differences in the transcriptomic reprogramming of host plants upon infection, underlying molecular mechanisms and associated genes are largely unknown. In the present study, we employed transcriptome analysis to identify responsible host factors for symptom enhancement in the BBWV2-pepper pathosystem using two distinct BBWV2 strains, PAP1 (a severe strain) and RP1 (a mild strain). Comparative analysis of the differentially expressed genes (DEGs) revealed that various genes associated with pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and ethylene signaling were significantly upregulated upon infection with the severe PAP1 strain, but not with the mild RP1 strain. Indeed, hormone analysis revealed that ethylene emission was significantly increased in pepper plants infected with PAP1. These observations imply that the activation of the PTI-associated defense responses reinforce symptom formation during BBWV2 infection in a virus strain-specific manner.
Collapse
Affiliation(s)
- Soo-Jung Han
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Boram Choi
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Myung-Hwi Kim
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
- Integrated Major in Global Smart Farm, Seoul National University, Seoul, South Korea
| | - Sun-Jung Kwon
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, Rural Development Administration, National Institute of Agricultural Sciences, Wanju, South Korea
| | - Jang-Kyun Seo
- Department of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
- Integrated Major in Global Smart Farm, Seoul National University, Seoul, South Korea
- *Correspondence: Jang-Kyun Seo,
| |
Collapse
|
6
|
Carpino C, Ferriol Safont I, Elvira‐González L, Medina V, Rubio L, Peri E, Davino S, Galipienso Torregrosa L. RNA2-encoded VP37 protein of Broad bean wilt virus 1 is a determinant of pathogenicity, host susceptibility, and a suppressor of post-transcriptional gene silencing. MOLECULAR PLANT PATHOLOGY 2020; 21:1421-1435. [PMID: 32936537 PMCID: PMC7549002 DOI: 10.1111/mpp.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/01/2023]
Abstract
Broad bean wilt virus 1 (BBWV-1, genus Fabavirus, family Secoviridae) is a bipartite, single-stranded positive-sense RNA virus infecting many horticultural and ornamental crops worldwide. RNA1 encodes proteins involved in viral replication whereas RNA2 encodes two coat proteins (the large and small coat proteins) and two putative movement proteins (MPs) of different sizes with overlapping C-terminal regions. In this work, we determined the role played by the small putative BBWV-1 MP (VP37) on virus pathogenicity, host specificity, and suppression of post-transcriptional gene silencing (PTGS). We engineered a BBWV-1 35S-driven full-length cDNA infectious clone corresponding to BBWV-1 RNA1 and RNA2 (pBBWV1-Wt) and generated a mutant knocking out VP37 (pBBWV1-G492C). Agroinfiltration assays showed that pBBWV1-Wt, as the original BBWV-1 isolate, infected broad bean, tomato, pepper, and Nicotiana benthamiana, whereas pBBWV1-G492C did not infect pepper and tomato systemically. Also, pBBWV1-G492C induced milder symptoms in broad bean and N. benthamiana than pBBWV1-Wt. Differential retrotranscription and amplification of the (+) and (-) strands showed that pBBWV1-G492C replicated in the agroinfiltrated leaves of pepper but not in tomato. All this suggests that VP37 is a determinant of pathogenicity and host specificity. Transient expression of VP37 through a potato virus X (PVX) vector enhanced PVX symptoms and induced systemic necrosis associated with programmed cell death in N. benthamiana plants. Finally, VP37 was identified as a viral suppressor of RNA silencing by transient expression in N. benthamiana 16c plants and movement complementation of a viral construct based on turnip crinkle virus (pTCV-GFP).
Collapse
Affiliation(s)
- Caterina Carpino
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | | - Laura Elvira‐González
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
- Departamento de BiotecnologíaEscuela Técnica Superior de Ingeniería NaturalUniversitat Politècnica de ValènciaValenciaSpain
| | - Vicente Medina
- Departamento de Producción Vegetal y Ciencia ForestalUniversitat de LleidaLleidaSpain
| | - Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasValenciaSpain
| | - Ezio Peri
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | - Salvatore Davino
- Department of Agricultural, Food and Forestry ScienceUniversity of PalermoPalermoItaly
| | | |
Collapse
|