1
|
Li J, Wang D, Qi L, Yang Y, Pei J, Dong Y, Wang Y, Yao M, Zhang F, Lei Y, Cheng L, Ye W. Genomic sequencing revealed recombination event between clade 1 and clade 2 occurs in circulating varicella-zoster virus in China. Braz J Microbiol 2024; 55:125-132. [PMID: 38052769 PMCID: PMC10920497 DOI: 10.1007/s42770-023-01206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023] Open
Abstract
Varicella-zoster virus (VZV), a member of the Alphaherpesvirinae subfamily, causes varicella in primary infections and establishing a latent stage in sensory ganglia. Upon reactivation, VZV causes herpes zoster with severe neuralgia, especially in elderly patients. The mutation rate for VZV is comparatively lower than the other members of other alpha herpesviruses. Due to geographic isolation, different genotypes of VZV are circulating on separate continents. Here, we successfully isolated a VZV from the vesicular fluid of a youth zoster patient. Based on the single-nucleotide polymorphism profiles of different open reading frames that define the genotype, this newly isolated VZV primarily represents genotype clade 2 but also has characteristics of genotype clade 1. The next-generation sequencing provided a nearly full-length sequence, and further phylogenetic analysis revealed that this VZV isolate is distinct from clades 1 and 2. The Recombination Detection Program indicates that a possible recombinant event may occur between the VZV isolate and clade 1. In summary, we found that there is a circulating VZV isolate in China that may represent a recombinant between clade 1 and clade 2, providing new concerns that need to be considered in the future VZV vaccination program.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Dan Wang
- Second Affiliated Hospital, Xi'an Medical University, 167th Textile East Street, Xi'an, China
| | - Libin Qi
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Yuewu Yang
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Jiawei Pei
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min Yao
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Shin D, Shin Y, Kim E, Nam H, Nan H, Lee J. Immunological characteristics of MAV/06 strain of varicella-zoster virus vaccine in an animal model. BMC Immunol 2022; 23:27. [PMID: 35658899 PMCID: PMC9166591 DOI: 10.1186/s12865-022-00503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Varicella-zoster virus (VZV) is a pathogen that causes chickenpox and shingles in humans. Different types of the varicella vaccines derived from the Oka and MAV/06 strains are commercially available worldwide. Although the MAV/06 vaccine was introduced in 1990s, little was known about immunological characteristics. RESULTS Here, we evaluated B and T cell immune response in animals inoculated with the Oka and MAV/06 vaccines as well as a new formulation of the MAV/06 vaccine. A variety of test methods were applied to evaluate T and B cell immune response. Plaque reduction neutralization test (PRNT) and fluorescent antibody to membrane antigen (FAMA) assay were conducted to measure the MAV/06 vaccine-induced antibody activity against various VZVs. Glycoprotein enzyme-linked immunosorbent assay (gpELISA) was used to compare the degree of the antibody responses induced by the two available commercial VZV vaccines and the MAV/06 vaccine. Interferon-gamma enzyme-linked immunosorbent spot (IFN-γ ELISpot) assays and cytokine bead array (CBA) assays were conducted to investigate T cell immune responses. Antibodies induced by MAV/06 vaccination showed immunogenicity against a variety of varicella-zoster virus and cross-reactivity among the virus clades. CONCLUSIONS It is indicating the similarity of the antibody responses induced by commercial varicella vaccines and the MAV/06 vaccine. Moreover, VZV-specific T cell immune response from MAV/06 vaccination was increased via Th1 cell response. MAV/06 varicella vaccine induced both humoral and cellular immune response via Th1 cell mediated response.
Collapse
Affiliation(s)
- Duckhyang Shin
- GC Biopharma Corp., 107, Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Younchul Shin
- GC Biopharma Corp., 107, Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Eunmi Kim
- MOGAM Institute for Biomedical Research, 107, Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyojung Nam
- GC Biopharma Corp., 107, Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Haiyan Nan
- GC Biopharma Corp., 107, Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jaewoo Lee
- GC Biopharma Corp., 107, Ihyeon-ro 30beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Hwang HR, Kim SC, Kang SH, Lee CH. Increase in the genetic polymorphism of varicella-zoster virus after passaging in in vitro cell culture. J Microbiol 2019; 57:1033-1039. [PMID: 31659688 DOI: 10.1007/s12275-019-9429-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Primary infections with the varicella-zoster virus (VZV) result in varicella, while latent reactivation leads to herpes zoster. Both varicella and zoster can be prevented by live attenuated vaccines. There have been reports suggesting that both clinical VZV strains and those in vaccine preparations are genetically polymorphic, containing mixtures of both wild-type and vaccine-type sequences at certain vaccine-specific sites. In this study, the genetic polymorphism of the VZV genome was examined by analyzing the frequencies of minor alleles at each nucleotide position. Next-generation sequencing of the clinical VZV strain YC02 passaged in an in vitro cell culture was used to identify genetically polymorphic sites (GPS), where the minor allele frequency (MAF) exceeded 5%. The number of GPS increased by 7.3-fold at high passages (p100) when compared to low passages (p17), although the average MAF remained similar. GPS were found in 6 open reading frames (ORFs) in p17, 35, and 54 ORFs in p60 and p100, respectively. GPS were found more frequently in the dispensable gene group than the essential gene group, but the average MAF was greater in the essential gene group. The most common two major/minor base pairs were A/g and T/c. GPS were found in all three passages at 16 positions, all located in the reiterated (R) region. The population diversity as measured by Shannon entropy increased in p60 and p100. However, the entropy remained unchanged in the R regions.
Collapse
Affiliation(s)
- Hye Rim Hwang
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seok Cheon Kim
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Se Hwan Kang
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
4
|
Whole Transcriptome Analyses Reveal Differential mRNA and microRNA Expression Profiles in Primary Human Dermal Fibroblasts Infected with Clinical or Vaccine Strains of Varicella Zoster Virus. Pathogens 2019; 8:pathogens8040183. [PMID: 31658769 PMCID: PMC6963325 DOI: 10.3390/pathogens8040183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Licensed live attenuated vaccines have been developed to prevent varicella zoster virus (VZV) infection, which causes chickenpox and shingles. The genomic sequences of both clinical- and vaccine-derived VZV strains have been analyzed previously. To further characterize the molecular signatures and complexity of wildtype (clinical) versus attenuated (vaccine-derived) VZV-mediated host cellular responses, we performed high-throughput next generation sequencing to quantify and compare the expression patterns of mRNAs and microRNAs (miRNAs) in primary human dermal fibroblasts (HDFs) infected with wildtype (YC01 low passage) and attenuated (YC01 high passage, SuduVax, and VarilRix) VZV strains. 3D-multidimensional scaling of the differentially expressed genes demonstrated the distinct grouping of wildtype and attenuated strains. In particular, we observed that HDFs infected with attenuated strains had more differentially expressed genes (DEGs) involved in the retinoic-acid inducible gene–I-like receptor and interferon-mediated signaling pathways compared with wildtype strains. Additionally, miRNA expression patterns were profiled following the infection of HDFs with VZV. Small RNA sequencing identified that several miRNAs were upregulated, including miR-146a-5p, which has been associated with other herpesvirus infections, whereas let-7a-3p was downregulated in both wildtype and attenuated VZV-infected cells. This study identified genes and miRNAs that may be essential in VZV pathogenesis.
Collapse
|