1
|
Zhou L, Liu R, Pathak H, Wang X, Jeong GH, Kumari P, Kumar M, Yin J. Ubiquitin Ligase Parkin Regulates the Stability of SARS-CoV-2 Main Protease and Suppresses Viral Replication. ACS Infect Dis 2024; 10:879-889. [PMID: 38386664 PMCID: PMC10928718 DOI: 10.1021/acsinfecdis.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The highly infectious coronavirus SARS-CoV-2 relies on the viral main protease (Mpro, also known as 3CLpro or Nsp5) to proteolytically process the polyproteins encoded by the viral genome for the release of functional units in the host cells to initiate viral replication. Mpro also interacts with host proteins of the innate immune pathways, such as IRF3 and STAT1, to suppress their activities and facilitate virus survival and proliferation. To identify the host mechanism for regulating Mpro, we screened various classes of E3 ubiquitin ligases and found that Parkin of the RING-between-RING family can induce the ubiquitination and degradation of Mpro in the cell. Furthermore, when the cells undergo mitophagy, the PINK1 kinase activates Parkin and enhances the ubiquitination of Mpro. We also found that elevated expression of Parkin in the cells significantly decreased the replication of SARS-CoV-2 virus. Interestingly, SARS-CoV-2 infection downregulates Parkin expression in the mouse lung tissues compared to healthy controls. These results suggest an antiviral role of Parkin as a ubiquitin ligase targeting Mpro and the potential for exploiting the virus-host interaction mediated by Parkin to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Li Zhou
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Heather Pathak
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoyu Wang
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Geon H. Jeong
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Pratima Kumari
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Mukesh Kumar
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Bandilovska I, Keam SP, Gamell C, Machicado C, Haupt S, Haupt Y. E6AP goes viral: the role of E6AP in viral- and non-viral-related cancers. Carcinogenesis 2019; 40:707-714. [DOI: 10.1093/carcin/bgz072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Since its discovery, the E3 ubiquitin ligase E6-associated protein (E6AP) has been studied extensively in two pathological contexts: infection by the human papillomavirus (HPV), and the neurodevelopmental disorder, Angelman syndrome. Vital biological links between E6AP and other viruses, namely hepatitis C virus and encephalomyocarditis virus, have been recently uncovered. Critically, oncogenic E6AP activities have been demonstrated to contribute to cancers of both viral and non-viral origins. HPV-associated cancers serve as the primary example of E6AP involvement in cancers driven by viruses. Studies over the past few years have exposed a role for E6AP in non-viral-related cancers. This has been demonstrated in B-cell lymphoma and prostate cancers, where oncogenic E6AP functions drive these cancers by acting on key tumour suppressors. In this review we discuss the role of E6AP in viral infection, viral propagation and viral-related cancer. We discuss processes affected by oncogenic E6AP, which promote cancers of viral and non-viral aetiology. Overall, recent findings support the role of oncogenic E6AP in disrupting key cellular processes, including tumour suppression and the immune response. E6AP is consequently emerging as an attractive therapeutic target for a number of specific cancers.
Collapse
Affiliation(s)
- Ivona Bandilovska
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon P Keam
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Cristina Gamell
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Claudia Machicado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|