1
|
Sun Z, Wu YX, Liu LZ, Tian YP, Li XD, Geng C. P3N-PIPO but not P3 is the avirulence determinant in melon carrying the Wmr resistance against watermelon mosaic virus, although they contain a common genetic determinant. J Virol 2024; 98:e0050724. [PMID: 38775482 PMCID: PMC11237411 DOI: 10.1128/jvi.00507-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 06/14/2024] Open
Abstract
Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yu-Xuan Wu
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ling-Zhi Liu
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yan-Ping Tian
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiang-Dong Li
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, China
| | - Chao Geng
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
2
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Goh R, Xie X, Lin Y, Cheng H, Raja JAJ, Yeh S. Rapid selection of potyviral cross-protection effective mutants from the local lesion host after nitrous acid mutagenesis. MOLECULAR PLANT PATHOLOGY 2023; 24:973-988. [PMID: 37158451 PMCID: PMC10346369 DOI: 10.1111/mpp.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) seriously damages cucurbits worldwide. Control of ZYMV by cross-protection has been practised for decades, but selecting useful mild viruses is time-consuming and laborious. Most attenuated potyviruses used for cross-protection do not induce hypersensitive reaction (HR) in Chenopodium quinoa, a local lesion host Chenopodium quinoa. Here, severe ZYMV TW-TN3 tagged with green fluorescent protein (GFP), designated ZG, was used for nitrous acid mutagenesis. From three trials, 11 mutants were identified from fluorescent spots without HR in inoculated C. quinoa leaves. Five mutants caused attenuated symptoms in squash plants. The genomic sequences of these five mutants revealed that most of the nonsynonymous changes were located in the HC-Pro gene. The replacement of individual mutated HC-Pros in the ZG backbone and an RNA silencing suppression (RSS) assay indicated that each mutated HC-Pro is defective in RSS function and responsible for reduced virulence. Four mutants provided high degrees of protection (84%-100%) against severe virus TW-TN3 in zucchini squash plants, with ZG 4-10 being selected for removal of the GFP tag. After removal of the GFP gene, Z 4-10 induced symptoms similar to ZG 4-10 and still provided 100% protection against TW-TN3 in squash, thus is considered not a genetically engineered mutant. Therefore, using a GFP reporter to select non-HR mutants of ZYMV from C. quinoa leaves is an efficient way to obtain beneficial mild viruses for cross-protection. This novel approach is being applied to other potyviruses.
Collapse
Affiliation(s)
- Reun‐Ping Goh
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Xing‐Yun Xie
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Ya‐Chi Lin
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Hao‐Wen Cheng
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Joseph A. J. Raja
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Shyi‐Dong Yeh
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
4
|
Kubina J, Hily JM, Mustin P, Komar V, Garcia S, Martin IR, Poulicard N, Velt A, Bonnet V, Mercier L, Lemaire O, Vigne E. Characterization of Grapevine Fanleaf Virus Isolates in ‘Chardonnay’ Vines Exhibiting Severe and Mild Symptoms in Two Vineyards. Viruses 2022; 14:v14102303. [PMID: 36298857 PMCID: PMC9609649 DOI: 10.3390/v14102303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Fanleaf degeneration is a complex viral disease of Vitis spp. that detrimentally impacts fruit yield and reduces the productive lifespan of most vineyards worldwide. In France, its main causal agent is grapevine fanleaf virus (GFLV). In the past, field experiments were conducted to explore cross-protection as a management strategy of fanleaf degeneration, but results were unsatisfactory because the mild virus strain negatively impacted fruit yield. In order to select new mild GFLV isolates, we examined two old ‘Chardonnay’ parcels harbouring vines with distinct phenotypes. Symptoms and agronomic performances were monitored over the four-year study on 21 individual vines that were classified into three categories: asymptomatic GFLV-free vines, GFLV-infected vines severely diseased and GFLV-infected vines displaying mild symptoms. The complete coding genomic sequences of GFLV isolates in infected vines was determined by high-throughput sequencing. Most grapevines were infected with multiple genetically divergent variants. While no specific molecular features were apparent for GFLV isolates from vines displaying mild symptoms, a genetic differentiation of GFLV populations depending on the vineyard parcel was observed. The mild symptomatic grapevines identified during this study were established in a greenhouse to recover GFLV variants of potential interest for cross-protection studies.
Collapse
Affiliation(s)
- Julie Kubina
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Jean-Michel Hily
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
- IFV, 30240 Le Grau-Du-Roi, France
| | - Pierre Mustin
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Véronique Komar
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Shahinez Garcia
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | | | - Nils Poulicard
- PHIM, Université Montpellier, IRD, INRAE, Cirad, SupAgro, 34000 Montpellier, France
| | - Amandine Velt
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Véronique Bonnet
- Maison Moët & Chandon, 20 Avenue de Champagne, 51200 Épernay, France
| | - Laurence Mercier
- Maison Moët & Chandon, 20 Avenue de Champagne, 51200 Épernay, France
| | - Olivier Lemaire
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
| | - Emmanuelle Vigne
- INRAE, SVQV UMR-A 1131, Université de Strasbourg, 68000 Colmar, France
- Correspondence:
| |
Collapse
|
5
|
Xu L, Zhang W, Gao Y, Meng F, Nie X, Bai Y. Potato Virus Y Strain N-Wi Offers Cross-Protection in Potato Against Strain NTN-NW by Superior Competition. PLANT DISEASE 2022; 106:1566-1572. [PMID: 35072502 DOI: 10.1094/pdis-11-21-2539-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potato virus Y (PVY) is one of the most economically important pathogens of potato. PVY exhibits different phenotypes in dissimilar potato cultivars. Previously, we observed that two recombinant isolates, PVYN-Wi-HLJ-BDH-2 (BDH) and PVYNTN-NW(SYR-II)-INM-W-369-12 (369), exhibited different virulence levels in potato cultivar Kexin 13 despite high genome sequence identity. Indeed, 369 induced severe necrosis and plant death in severe cases in Kexin 13 and severe mosaic in cultivar Yanshu 8, whereas BDH caused mainly mosaic symptoms on the plants of both cultivars. We hypothesized that preinfection of plants with BDH could cross-protect them from 369 infection, and not vice versa. Challenge inoculation, either by mechanical wounding or through grafting, with 369 on plants that were preinfected with BDH did not augment the symptom expression in both cultivars. Reverse transcription quantitative PCR analysis showed that, after challenge inoculation with 369, the titer of the isolate on BDH-preinfected plants remained at a low level (about 3 × 104 copy/µl) during the tested time course (0 h to 30 days). In contrast, in plants that were preinoculated with buffer (mock) and challenge inoculated with 369, the titer of 369 increased continuously until reaching its highest level of about 2 × 107 (Yanshu 8) and about 4 × 108 (Kexin 13) during the time course. Surprisingly, in plants that were preinfected with 369 and challenge inoculated with BDH, the accumulation of BDH reached nearly the same level as that in plants that were preinoculated with buffer and challenge inoculated with BDH. Taken together, these results suggest that PVYN-Wi mediated cross-protection against PVYNTN-NW(SYR-II) by superior competition and better fitness.
Collapse
Affiliation(s)
- Liping Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Harbin 150040, China
| | - Wei Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanling Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Harbin 150040, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 0E2, Canada
| | - Yanju Bai
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Tran TTY, Lin TT, Chang CP, Chen CH, Nguyen VH, Yeh SD. Generation of Mild Recombinants of Papaya Ringspot Virus to Minimize the Problem of Strain-Specific Cross-Protection. PHYTOPATHOLOGY 2022; 112:708-719. [PMID: 34384243 DOI: 10.1094/phyto-06-21-0272-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Papaya ringspot virus (PRSV) causes severe damage to papaya (Carica papaya L.) and is the primary limiting factor for papaya production worldwide. A nitrous acid-induced mild strain, PRSV HA 5-1, derived from Hawaii strain HA, has been applied to control PRSV by cross-protection for decades. However, the problem of strain-specific protection hampers its application in Taiwan and other geographic regions outside Hawaii. Here, sequence comparison of the genomic sequence of HA 5-1 with that of HA revealed 69 nucleotide changes, resulting in 31 aa changes, of which 16 aa are structurally different. The multiple mutations of HA 5-1 are considered to result from nitrous acid induction because 86% of nucleotide changes are transition mutations. The stable HA 5-1 was used as a backbone to generate recombinants carrying individual 3' fragments of Vietnam severe strain TG5, including NIa, NIb, and CP3' regions, individually or in combination. Our results indicated that the best heterologous fragment for the recombinant is the region of CP3', with which symptom attenuation of the recombinant is like that of HA 5-1. This mild recombinant HA51/TG5-CP3' retained high levels of protection against the homologous HA in papaya plants and significantly increased the protection against the heterologous TG-5. Similarly, HA 5-1 recombinants carrying individual CP3' fragments from Thailand SMK, Taiwan YK, and Vietnam ST2 severe strains also significantly increase protection against the corresponding heterologous strains in papaya plants. Thus, our recombinant approach for mild strain generation is a fast and effective way to minimize the problem of strain-specific protection.
Collapse
Affiliation(s)
- Thi-Thu-Yen Tran
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Tzu-Tung Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chung-Ping Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chun-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Van-Hoa Nguyen
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Vietnam Overseas Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
7
|
Xu XJ, Zhu Q, Jiang SY, Yan ZY, Geng C, Tian YP, Li XD. Development and Evaluation of Stable Sugarcane Mosaic Virus Mild Mutants for Cross-Protection Against Infection by Severe Strain. FRONTIERS IN PLANT SCIENCE 2021; 12:788963. [PMID: 34975975 PMCID: PMC8718998 DOI: 10.3389/fpls.2021.788963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 05/26/2023]
Abstract
Sugarcane mosaic virus (SCMV; genus Potyvirus) induces maize dwarf mosaic disease that has caused serious yield losses of maize in China. Cross-protection is one of the efficient strategies to fight against severe virus strains. Although many mild strains have been identified, the spontaneous mutation is one of the challenging problems affecting their application in cross-protection. In this study, we found that the substitution of cysteine (C) at positions 57 or 60 in the zinc finger-like motif of HC-Pro with alanine (A; C57A or C60A) significantly reduced its RNA silencing suppression activity and SCMV virulence. To reduce the risk of mild strains mutating to virulent ones by reverse or complementary mutations, we obtained attenuated SCMV mutants with double-mutations in the zinc finger-like and FRNK motifs of HC-Pro and evaluated their potential application in cross-protection. The results showed that the maize plants infected with FKNK/C60A double-mutant showed symptomless until 95 days post-inoculation and FKNK/C60A cross-protected plants displayed high resistance to severe SCMV strain. This study provides theoretical and material bases for the control of SCMV through cross-protection.
Collapse
|
8
|
Xu XJ, Li HG, Cheng DJ, Liu LZ, Geng C, Tian YP, Li XD. A Spontaneous Complementary Mutation Restores the RNA Silencing Suppression Activity of HC-Pro and the Virulence of Sugarcane Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2020; 11:1279. [PMID: 32973838 PMCID: PMC7472499 DOI: 10.3389/fpls.2020.01279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/05/2020] [Indexed: 05/26/2023]
Abstract
Cross-protection is a promising measure to control plant viral diseases. Reverse genetics had been recently adopted to generate attenuated mutants that have potential in cross-protection. But studies on the variability of the progeny viruses of the attenuated mutants are scarce. Sugarcane mosaic virus (SCMV; genus Potyvirus, family Potyviridae) is the prevalent virus inducing maize dwarf mosaic disease in China. Here, we showed that the substitution of arginine with isoleucine in the FRNK motif at position 184 of helper component-proteinase (HC-Pro) abolished its RNA silencing suppression (RSS) activity, drastically reduced the virulence and accumulation level of SCMV, and impaired the synergism between SCMV and maize chlorotic mottle virus. The attenuated mutant could protect maize plants from a severe infection of SCMV. However, a spontaneous mutation of glycine at position 440 to arginine in HC-Pro rescued the virulence and synergism with maize chlorotic mottle virus of SCMV and the RSS activity of HC-Pro. Similar results were obtained with tobacco vein banding mosaic virus and watermelon mosaic virus. These results provide novel evidence for the complementary mutation of potyviruses in maintaining the HC-Pro RSS activity and potyviral virulence and remind us of evaluating the potential risk of attenuated mutants thoroughly before applying for the control of plant viral diseases via cross-protection.
Collapse
Affiliation(s)
- Xiao-Jie Xu
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Huan-Gai Li
- Protein Science Laboratory of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
| | - De-Jie Cheng
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ling-Zhi Liu
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chao Geng
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan-Ping Tian
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xiang-Dong Li
- Shandong Province Key Laboratory for Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
9
|
Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H. Application of Reverse Genetics in Functional Genomics of Potyvirus. Viruses 2020; 12:v12080803. [PMID: 32722532 PMCID: PMC7472138 DOI: 10.3390/v12080803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus–host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Correspondence: ; Tel.: +60-3-8921-4554
| |
Collapse
|
10
|
Cheng DJ, Tian YP, Geng C, Guo Y, Jia MA, Li XD. Development and application of a full-length infectious clone of potato virus Y isolate belonging to SYR-I strain. Virus Res 2020; 276:197827. [PMID: 31785306 DOI: 10.1016/j.virusres.2019.197827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022]
Abstract
Potato virus Y (PVY) causes huge damage to potato and tobacco production worldwide. The complete genome sequence of GZ, a PVY isolate (strain SYR-I) from Guizhou province, China, was cloned into the binary vector pCambia0390. Three introns were individually inserted into the P3 and CI ORFs to produce plasmid pCamPVY-GZ. The plasmid could infect plants of Nicotiana benthamiana, N. tabacum via agroinfiltration and plants of pepper and potato by mechanical inoculation. The green fluorescence protein gene of Aequoria victoriae was cloned into the encoding regions between nuclear inclusion body 'b' and coat protein genes in pCamPVY-GZ to produce pCamPVY-GZ-GFP, which could infect plants of N. benthamiana, N. tabacum, potato and tomato, and produce green fluorescence in the systemic leaves of inoculated plants. Mutations were introduced to pCamPVY-GZ to make the lysine (K) 391 and glutamic acid (E)410 of helper component-proteinase to arginine (R) and asparagic acid (E), respectively. Unlike wild type PVY-GZ, the mutant PVY-K391R/E410D could not induce veinal necrosis in N. tabacum plants. With an interval of 14 days, mutant PVY-K391R/E410D could protect N. tabacum plants from the infection of severe PVY strain. The results presented here provide a promising alternate for the prevention of diseases caused by PVY.
Collapse
Affiliation(s)
- De-Jie Cheng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China
| | - Chao Geng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Sciences, Guiyang, Guizhou 550001, China
| | - Meng-Ao Jia
- Guizhou Academy of Tobacco Sciences, Guiyang, Guizhou 550001, China.
| | - Xiang-Dong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shangdong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, China.
| |
Collapse
|
11
|
Tuo D, Zhou P, Zhao G, Yan P, Tan D, Li X, Shen W. A Double Mutation in the Conserved Motifs of the Helper Component Protease of Papaya Leaf Distortion Mosaic Virus for the Generation of a Cross-Protective Attenuated Strain. PHYTOPATHOLOGY 2020; 110:187-193. [PMID: 31516080 DOI: 10.1094/phyto-09-19-0328-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potyviral helper component protease (HC-Pro), as a major determinant of symptom expression in susceptible plants, is a likely target candidate in the production of attenuated strains for cross-protection. In this study, single or double mutations of Lys (K) to Glu (E) in the Lys-Ile-Thr-Cys motif and Arg (R) to Ile (I) in the Phe-Arg-Asn-Lys motif of the HC-Pro from the severe papaya leaf distortion mosaic virus strain DF (PLDMV-DF) reduced symptom expression and virus accumulation in infected papaya (Carica papaya) plants. The papaya plants infected with the attenuated double mutant of PLDMV-EI presented as symptomless. PLDMV-EI provided effective protection against PLDMV-DF infection in three papaya cultivars and had no effect on plant growth and development. Our result showed that PLDMV-EI is a promising mild strain for the practical use of cross-protection in the field.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Guangyuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Dong Tan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory of Tropical Microbe Resources, Haikou 571101, China
| |
Collapse
|
12
|
Pechinger K, Chooi KM, MacDiarmid RM, Harper SJ, Ziebell H. A New Era for Mild Strain Cross-Protection. Viruses 2019; 11:E670. [PMID: 31340444 PMCID: PMC6669575 DOI: 10.3390/v11070670] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022] Open
Abstract
Societal and environmental pressures demand high-quality and resilient cropping plants and plant-based foods grown with the use of low or no synthetic chemical inputs. Mild strain cross-protection (MSCP), the pre-immunization of a plant using a mild strain of a virus to protect against subsequent infection by a severe strain of the virus, fits with future-proofing of production systems. New examples of MSCP use have occurred recently. New technologies are converging to support the discovery and mechanism(s) of action of MSCP strains thereby accelerating the popularity of their use.
Collapse
Affiliation(s)
- Katrin Pechinger
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Scott J Harper
- Department of Plant Pathology, Washington, State University, Prosser, WA 99350, USA
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.
| |
Collapse
|