1
|
Ruiz-Ponsell L, Monastiri A, López-Roig M, Sauleda S, Bes M, Mentaberre G, Escobar-González M, Costafreda MI, López-Olvera JR, Serra-Cobo J. Endemic maintenance of human-related hepatitis E virus strains in synurbic wild boars, Barcelona Metropolitan Area, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176871. [PMID: 39395489 DOI: 10.1016/j.scitotenv.2024.176871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Hepatitis E virus (HEV), shared by humans, domestic animals, and wildlife, is an emerging global public health threat. Because wild boars are a major reservoir of HEV, the new zoonotic interfaces resulting from wild boar population increase and synurbization significantly contribute to increasing the risk of zoonotic transmission of HEV. This study characterizes HEV strains of synurbic wild boars and assesses their relationship with sympatric human and domestic swine HEV strains. We analyzed the faeces of 312 synurbic wild boars collected from 2016 to 2021 in the Barcelona Metropolitan Area (BMA), where there is a high density of wild boars, and found 7 HEV-positive samples among those collected between 2019 and 2020. The molecular analysis of these isolates, along with 6 additional wild boar HEV isolates from a previous study, allowed us to establish a close phylogenetic relationship between these HEV strains and human HEV isolates from sympatric blood donors and domestic pigs from Catalonia. HEV-positive wild boar samples belonged to piglet, juvenile and yearling individuals, but not adults, indicating the endemic maintenance of HEV in the wild boar population of the BMA by naïve young individuals. All wild boar HEV isolates in this study classified within HEV genotype 3. The results show, for the first time, a close molecular similarity between the HEV strains endemically maintained by the synurbic wild boars in the BMA and citizens from the same area and period. The data could also indicate that HEV infection presents a seasonal and interannual variability in wild boars of BMA. Further investigation is required to unveil the HEV transmission routes between synurbic wild boars and sympatric citizens. These findings can serve in other synurbic wildlife-human interfaces throughout the world.
Collapse
Affiliation(s)
| | - Abir Monastiri
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| | - Marc López-Roig
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| | - Sílvia Sauleda
- Banc de Sang i Teixits de Catalunya, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Bes
- Banc de Sang i Teixits de Catalunya, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Gregorio Mentaberre
- Wildlife Ecology and Health Group, Barcelona, Spain; Universitat de Lleida, Lleida, Spain
| | - María Escobar-González
- Wildlife Ecology and Health Group, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Barcelona, Spain
| | - Maria I Costafreda
- Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Santa Coloma de Gramanet, Spain.
| | - Jorge R López-Olvera
- Wildlife Ecology and Health Group, Barcelona, Spain; Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Barcelona, Spain
| | - Jordi Serra-Cobo
- Universitat de Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Spain
| |
Collapse
|
2
|
Santos-Silva S, da Silva Dias Moraes DF, López-López P, Rivero-Juarez A, Mesquita JR, Nascimento MSJ. Hepatitis E Virus in the Iberian Peninsula: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:193-211. [PMID: 37434079 PMCID: PMC10499749 DOI: 10.1007/s12560-023-09560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
One of the most frequent causes of acute viral hepatitis is hepatitis E virus (HEV) causing 20 million infections worldwide each year and 44,000 deaths. Studies on HEV in the Iberian Peninsula have been increasing through time with HEV infection being identified in humans and animals. The aim of the present systematic review was to compile and evaluate all the published data on HEV from studies performed in humans, animals and environmental samples in the Iberian Peninsula. The electronic databases Mendeley, PubMed, Scopus, and Web of Science were thoroughly searched, and research published up until February 01, 2023 were included. Resulting in a total of 151 eligible papers by full reading and application of PRISMA exclusion/inclusion criteria. Overall, the present review shows that several HEV genotypes, namely HEV-1, 3, 4, and 6 as well as Rocahepevirus, are circulating in humans, animals, and in the environment in the Iberian Peninsula. HEV-3 was the most common genotype circulating in humans in Portugal and Spain, as expected for developed countries, with HEV-1 only being detected in travelers and emigrants from HEV endemic regions. Spain is the biggest pork producer in Europe and given the high circulation of HEV in pigs, with HEV-3 being primarily associated to zoonotic transmission through consumption of swine meat and meat products, in our opinion, the introduction of an HEV surveillance system in swine and inclusion of HEV in diagnostic routines for acute and chronic human hepatitis would be important. Additionally, we propose that establishing a monitoring mechanism for HEV is crucial in order to gain a comprehensive understanding of the prevalence of this illness and the various strains present in the Iberian Peninsula, as well as their potential impact on public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | | |
Collapse
|
3
|
Peeters M, Schenk J, De Somer T, Roskams T, Locus T, Klamer S, Subissi L, Suin V, Delwaide J, Stärkel P, De Maeght S, Willems P, Colle I, Van Hoof M, Van Acker J, Van Steenkiste C, Moreno C, Janssens F, Reynders M, Steverlynck M, Verlinden W, Lasser L, de Galocsy C, Geerts A, Maus J, Gallant M, Van Outryve S, Marot A, Reynaert H, Decaestecker J, Bottieau E, Schreiber J, Mulkay JP, de Goeij S, Salame M, Dooremont D, Dastis SN, Boes J, Nijs J, Beyls J, Hens N, Nevens F, Van Gucht S, Vanwolleghem T. Viral clade is associated with severity of symptomatic genotype 3 hepatitis E virus infections in Belgium, 2010-2018. J Hepatol 2023; 78:67-77. [PMID: 36075495 DOI: 10.1016/j.jhep.2022.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS HEV genotype (gt) 3 infections are prevalent in high-income countries and display a wide spectrum of clinical presentations. Host - but not viral - factors are reported to be associated with worse clinical outcomes. METHODS Demographic, clinical, and biochemical data laboratory-confirmed HEV infections (by PCR and/or a combination of IgM and IgG serology) at the Belgian National Reference Centre between January 2010 and June 2018 were collected using standardised case report forms. Genotyping was based on HEV open reading frame 2 sequences. Serum CXCL10 levels were measured by a magnetic bead-based assay. H&E staining was performed on liver biopsies. RESULTS A total of 274 HEV-infected individuals were included. Subtype assignment was possible for 179/218 viraemic cases, confirming gt3 as dominant with an almost equal representation of clades abchijklm and efg. An increased hospitalisation rate and higher peak serum levels of alanine aminotransferase, bilirubin, and alkaline phosphatase were found in clade efg-infected individuals in univariate analyses. In multivariable analyses, clade efg infections remained more strongly associated with severe disease presentation than any of the previously identified host risk factors, being associated with a 2.1-fold higher risk of hospitalisation (95% CI 1.1-4.4, p = 0.034) and a 68.2% higher peak of bilirubin levels (95% CI 13.3-149.9, p = 0.010), independently of other factors included in the model. In addition, acute clade efg infections were characterised by higher serum CXCL10 levels (p = 0.0005) and a more pronounced liver necro-inflammatory activity (p = 0.022). CONCLUSIONS In symptomatic HEV gt3 infections, clade efg is associated with a more severe disease presentation, higher serum CXCL10 levels, and liver necro-inflammatory activity, irrespective of known host risk factors. CLINICAL TRIAL REGISTRATION The protocol was submitted to clinicaltrials.gov (NCT04670419). IMPACT AND IMPLICATIONS HEV genotype (gt) 3 infections display a wide spectrum of clinical presentations currently ascribed to host factors. Here we examined the role of viral factors on liver disease outcomes by combining viral phylogeny with clinical, biochemical, cytokine, and histological data from 274 Belgian adults infected with HEV presenting between 2010 and 2018. HEV gt 3 clade efg infections were associated with a more severe disease presentation, higher serum CXCL10 levels and liver necro-inflammatory activity, irrespective of known host risk factors. HEV gt3 clade-dependent clinical outcomes call for broad HEV gt3 subtyping in clinical practice and research to help identify those at higher risk for worse outcomes and to further unravel underlying virus-host interactions.
Collapse
Affiliation(s)
- Michael Peeters
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium
| | - Julie Schenk
- University of Antwerp, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Centre for Health Economic Research and Modelling Infectious Diseases, Antwerp, Belgium; Hasselt University, Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt, Belgium
| | - Thomas De Somer
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; Maria Middelares Hospital, Gastroenterology & Hepatology, Ghent, Belgium
| | - Tania Roskams
- KU Leuven, Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Tatjana Locus
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium
| | - Sofieke Klamer
- Sciensano, Epidemiology of Infectious Diseases, Brussels, Belgium
| | - Lorenzo Subissi
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium; European Public Health Microbiology Training Program (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Vanessa Suin
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium
| | - Jean Delwaide
- University Hospital Liege, Gastroenterology & Hepatology, Liege, Belgium
| | - Peter Stärkel
- Cliniques Universitaires Saint-Luc (CUSL), Gastroenterology & Hepatology, Brussels, Belgium
| | | | | | - Isabelle Colle
- A.S.Z. Aalst, Gastroenterology & Hepatology, Aalst, Belgium; Ghent University Hospital, Department of Hepatology and Gastroenterology, Ghent, Belgium
| | - Marc Van Hoof
- Clinique Saint-Luc, Gastroenterology & Hepatology, Bouge, Belgium
| | - Jos Van Acker
- AZ Sint-Lucas, Clinical Microbiology, Ghent, Belgium
| | - Christophe Van Steenkiste
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; Maria Middelares Hospital, Gastroenterology & Hepatology, Ghent, Belgium
| | - Christophe Moreno
- CUB Hôpital Erasme, Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Université Libre de Bruxelles, Brussels, Belgium
| | - Filip Janssens
- Jessa Hospital, Gastroenterology & Hepatology, Hasselt, Belgium
| | - Marijke Reynders
- AZ Sint-Jan Brugge-Oostende AV, Medical Microbiology, Laboratory Medicine, Brugge, Belgium
| | | | - Wim Verlinden
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; Vitaz, Gastroenterology & Hepatology, Sint-Niklaas, Belgium; University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, Antwerp, Belgium
| | - Luc Lasser
- CHU Brugmann, Gastroenterology & Hepatology, Brussels, Belgium
| | | | - Anja Geerts
- Ghent University Hospital, Gastroenterology & Hepatology, Ghent, Belgium
| | - Jeroen Maus
- ZNA Middelheim, Gastroenterology & Hepatology, Antwerp, Belgium
| | - Marie Gallant
- Jan Yperman Ziekenhuis, Gastroenterology & Hepatology, Ieper, Belgium
| | | | - Astrid Marot
- CHU UCL Namur, Université Catholique de Louvain, Department of Gastroenterology and Hepatology, Yvoir, Belgium
| | - Hendrik Reynaert
- University Hospital UZ Brussel, Gastroenterology & Hepatology, Brussels, Belgium
| | | | | | - Jonas Schreiber
- CHIREC Delta Hospital, Gastroenterology & Hepatology, Brussels, Belgium
| | | | | | - Mikhaël Salame
- Centre Hospitalier Régional Haute Senne, Soignies, Belgium
| | | | | | | | - Jochen Nijs
- Sint-Trudo Ziekenhuis, Department of Gastroenterology, Sint-Truiden, Belgium
| | - Jan Beyls
- Sint-Andriesziekenhuis, Department of Gastroenterology, Tielt, Belgium
| | - Niel Hens
- University of Antwerp, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Centre for Health Economic Research and Modelling Infectious Diseases, Antwerp, Belgium; Hasselt University, Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt, Belgium
| | - Frederik Nevens
- University Hospitals KU Leuven, Gastroenterology & Hepatology, Leuven, Belgium
| | - Steven Van Gucht
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium.
| | - Thomas Vanwolleghem
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, Antwerp, Belgium.
| | | |
Collapse
|
5
|
Cancela F, Noceti O, Arbiza J, Mirazo S. Structural aspects of hepatitis E virus. Arch Virol 2022; 167:2457-2481. [PMID: 36098802 PMCID: PMC9469829 DOI: 10.1007/s00705-022-05575-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. Hepatitis E is an enterically transmitted zoonotic disease that causes large waterborne epidemic outbreaks in developing countries and has become an increasing public-health concern in industrialized countries. In this setting, the infection is usually acute and self-limiting in immunocompetent individuals, although chronic cases in immunocompromised patients have been reported, frequently associated with several extrahepatic manifestations. Moreover, extrahepatic manifestations have also been reported in immunocompetent individuals with acute HEV infection. HEV belongs to the alphavirus-like supergroup III of single-stranded positive-sense RNA viruses, and its genome contains three partially overlapping open reading frames (ORFs). ORF1 encodes a nonstructural protein with eight domains, most of which have not been extensively characterized: methyltransferase, Y domain, papain-like cysteine protease, hypervariable region, proline-rich region, X domain, Hel domain, and RNA-dependent RNA polymerase. ORF2 and ORF3 encode the capsid protein and a multifunctional protein believed to be involved in virion release, respectively. The novel ORF4 is only expressed in HEV genotype 1 under endoplasmic reticulum stress conditions, and its exact function has not yet been elucidated. Despite important advances in recent years, the biological and molecular processes underlying HEV replication remain poorly understood, primarily due to a lack of detailed information about the functions of the viral proteins and the mechanisms involved in host-pathogen interactions. This review summarizes the current knowledge concerning HEV proteins and their biological properties, providing updated detailed data describing their function and focusing in detail on their structural characteristics. Furthermore, we review some unclear aspects of the four proteins encoded by the ORFs, highlighting the current key information gaps and discussing potential novel experimental strategies for shedding light on those issues.
Collapse
Affiliation(s)
- Florencia Cancela
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ofelia Noceti
- grid.414402.70000 0004 0469 0889Programa Nacional de Trasplante Hepático y Unidad Docente Asistencial Centro Nacional de Tratamiento Hepatobiliopancreatico. Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Juan Arbiza
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,Av. Alfredo Navarro 3051, PC 11600 Montevideo, Uruguay
| |
Collapse
|