1
|
Chen M, Kang L, Zhang T, Zheng J, Chen D, Shao D, Li Z, Li B, Wei J, Qiu Y, Feng X, Ma Z, Liu K. Circular RNA network plays a potential antiviral role in the early stage of JEV infection in mouse brain. Front Microbiol 2024; 14:1165378. [PMID: 38249464 PMCID: PMC10797004 DOI: 10.3389/fmicb.2023.1165378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Japanese encephalitis is one of the most important insect-borne infectious disease with public health concern. The virus can break the blood-brain barrier and cause death or long-term sequela in infected humans or animals. Viral encephalitis is an important clinical feature of JEV infection. In recent studies, CircRNAs and related ceRNAs data illustrated the regulative role in many aspects of biological process and disease duration. It is believed that CircRNA regulates JEV infection in a ceRNA-dependent mechanism. In this study, brain tissues of experimental mice were sequenced and analysised. 61 differentially expressed circRNAs, 172 differentially expressed miRNAs and 706 differentially expressed mRNAs were identified by RNA-Sequencing and statistical analysis. CX3CR1 was determined as a key host factor impact JEV infection by microRNA interference measurement. CX3CR1 interaction network indicated circStrbp/miR709/CX3CR1 as a functional regulation axis. Further sequencing in BV2 cell shown CX3CR1 is a special target of miR-709 only during JEV infection. In summary, our study presented a new ceRNA pathway that impact JEV infection in vivo and in vitro, which could be a therapeutic target to fight against JEV.
Collapse
Affiliation(s)
- Mengli Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Key Laboratory of Animal Disease Diagnostic and Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Kang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Key Laboratory of Animal Disease Diagnostic and Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xiuli Feng
- Key Laboratory of Animal Disease Diagnostic and Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| |
Collapse
|
2
|
Hu Y, Yu Y, Yang R, Wang R, Pu D, Wang Y, Fan J, Zhang Y, Song J. The neuropathological mechanism of EV-A71 infection attributes to inflammatory pryoptosis and viral replication via activating the hsa_circ_0045431/ hsa_miR_584/NLRP3 regulatory axis. Virus Res 2023; 335:199195. [PMID: 37579846 PMCID: PMC10450994 DOI: 10.1016/j.virusres.2023.199195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Neuropathological damage has been considered to be the main cause of death from EV-A71 infection, but the underlying mechanism has not been elucidated. Pyroptosis, a new form of inflammatory programmed cell death, has been verified to be involved in the pathogenesis of various viruses. circRNAs are a novel type of endogenous noncoding RNA gaining research interest in recent years, especially their special roles in the process of virus infection. Thus, in this study, we combined EV-A71, pyroptosis and circRNA to find a breakthrough in the pathogenesis of EV-A71 infection. Firstly, whether EV-A71 infection leaded to pyroptosis formation was examined by a series detection of cell death, cell viability, LDH release, caspase 1 activity, the expression levels of pyroptosis-related molecules and the concentrations of IL-1β and IL-18. Secondly, high-throughput sequencing of circRNAs was carried out to excavate the circRNA-miRNA-mRNA regulatory axis which might be associated with pyroptosis formation. Finally, the gain- and loss-of-functional experiments were further conducted to identify their functions. Our results showed that EV-A71 infection caused pyroptosis formation in SH-SY5Y cells. The circRNA sequencing analyzed the differentially expressed circRNAs and their possible functions. It was found that the hsa_circ_0045431/hsa_miR_584/NLRP3 regulatory axis might be involved in pyroptosis formation during EV-A71 infection. Then, hsa_circ_0045431 sponged hsa_miR_584 and hsa_miR_584 directly targeted NLRP3 were validated by IF, dual-luciferase, qRT-PCR and WB assays. Functional experiments were performed to further uncover that the up-regulation of hsa_circ_0045431 and NLRP3 promoted the inflammatory pyroptosis and viral replication, while the up-regulation of hsa_miR_584 suppressed the inflammatory pyroptosis and viral replication, and vice versa. Collectively, our study demystified that EV-A71 infection induced pyroptosis formation by activating hsa_circ_0045431/hsa_miR_584/NLRP3 regulatory axis, which could further effect viral replication. These findings provided novel insights into the pathogenesis of EV-A71 infection, and meanwhile revealed that the hsa_circ_0045431/ hsa_miR_584/NLRP3 regulatory axis can serve as a potential biological therapeutic target for EV-A71 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Yue Yu
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China
| | - Ruian Yang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Ruibing Wang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Dandan Pu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Yujue Wang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Jingyuan Fan
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, PR China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, PR China.
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, PR China.
| |
Collapse
|
3
|
Maarouf M, Wang L, Wang Y, Rai KR, Chen Y, Fang M, Chen JL. Functional Involvement of circRNAs in the Innate Immune Responses to Viral Infection. Viruses 2023; 15:1697. [PMID: 37632040 PMCID: PMC10458642 DOI: 10.3390/v15081697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Effective viral clearance requires fine-tuned immune responses to minimize undesirable inflammatory responses. Circular RNAs (circRNAs) are a class of non-coding RNAs that are abundant and highly stable, formed by backsplicing pre-mRNAs, and expressed ubiquitously in eukaryotic cells, emerging as critical regulators of a plethora of signaling pathways. Recent progress in high-throughput sequencing has enabled a better understanding of the physiological and pathophysiological functions of circRNAs, overcoming the obstacle of the sequence overlap between circRNAs and their linear cognate mRNAs. Some viruses also encode circRNAs implicated in viral replication or disease progression. There is increasing evidence that viral infections dysregulate circRNA expression and that the altered expression of circRNAs is critical in regulating viral infection and replication. circRNAs were shown to regulate gene expression via microRNA and protein sponging or via encoding small polypeptides. Recent studies have also highlighted the potential role of circRNAs as promising diagnostic and prognostic biomarkers, RNA vaccines and antiviral therapy candidates due to their higher stability and lower immunogenicity. This review presents an up-to-date summary of the mechanistic involvement of circRNAs in innate immunity against viral infections, the current understanding of their regulatory roles, and the suggested applications.
Collapse
Affiliation(s)
- Mohamed Maarouf
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lulu Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiming Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology, ShiGan International College of Science and Technology/ShiGan Health Foundation, Narayangopal Chowk, Kathmandu 44600, Nepal
| | - Yuhai Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China;
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.); (L.W.); (Y.W.); (K.R.R.); (Y.C.)
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the “Belt and Road”, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Ayaz H, Aslam N, Awan FM, Basri R, Rauff B, Alzahrani B, Arif M, Ikram A, Obaid A, Naz A, Khan SN, Yang BB, Nazir A. Mapping CircRNA-miRNA-mRNA regulatory axis identifies hsa_circ_0080942 and hsa_circ_0080135 as a potential theranostic agents for SARS-CoV-2 infection. PLoS One 2023; 18:e0283589. [PMID: 37053191 PMCID: PMC10101458 DOI: 10.1371/journal.pone.0283589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) can control the flux of genetic information; affect RNA stability and play crucial roles in mediating epigenetic modifications. A number of studies have highlighted the potential roles of both virus-encoded and host-encoded ncRNAs in viral infections, transmission and therapeutics. However, the role of an emerging type of non-coding transcript, circular RNA (circRNA) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been fully elucidated so far. Moreover, the potential pathogenic role of circRNA-miRNA-mRNA regulatory axis has not been fully explored as yet. The current study aimed to holistically map the regulatory networks driven by SARS-CoV-2 related circRNAs, miRNAs and mRNAs to uncover plausible interactions and interplay amongst them in order to explore possible therapeutic options in SARS-CoV-2 infection. Patient datasets were analyzed systematically in a unified approach to explore circRNA, miRNA, and mRNA expression profiles. CircRNA-miRNA-mRNA network was constructed based on cytokine storm related circRNAs forming a total of 165 circRNA-miRNA-mRNA pairs. This study implies the potential regulatory role of the obtained circRNA-miRNA-mRNA network and proposes that two differentially expressed circRNAs hsa_circ_0080942 and hsa_circ_0080135 might serve as a potential theranostic agents for SARS-CoV-2 infection. Collectively, the results shed light on the functional role of circRNAs as ceRNAs to sponge miRNA and regulate mRNA expression during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hassan Ayaz
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nouman Aslam
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Bisma Rauff
- Department of Biomedical Engineering, University of Engineering and Technology (UET), Lahore, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Arif
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Azhar Nazir
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Li J, Yang H, Shi H, Zhang J, Chen W. Expression Profiles of Differentially Expressed Circular RNAs and circRNA-miRNA-mRNA Regulatory Networks in SH-SY5Y Cells Infected with Coxsackievirus B5. Int J Genomics 2022; 2022:9298149. [PMID: 36267594 PMCID: PMC9577011 DOI: 10.1155/2022/9298149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B5 (CVB5) is the causative agent of hand, foot, and mouth disease (HFMD) that can cause neurological complications and fatalities. Circular RNA (circRNA) has been shown to play an important role in regulating pathogenic processes. However, the functions of circRNA in response to CVB5 infection remain unclear. In our research, RNA-seq was employed to analyze the expression profiles of circRNAs in SH-SY5Y cells with or without CVB5 infection. Out of 5,665 circRNAs identified to be expressed in SH-SY5Y cells, 163 circRNAs were found to be differentially expressed significantly. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the differentially expressed circRNAs were mainly involved in ubiquitin-mediated proteolysis and signaling pathways during CVB5 infection. Additionally, RT-qPCR was used to validate the RNA-seq data, and a circRNA-miRNA-mRNA interaction network was constructed based on two circRNAs, such as hsa_circ_0008378 and novel_circ_0014617, which were associated with the regulation of innate immune response in host cells. Additionally, we confirmed the two circRANs up-regulated the key factors in the IFN-I signaling pathway, hampering viral replication. Our data provide a new perspective that facilitates further understanding of the virus-host mechanism.
Collapse
Affiliation(s)
- Jing Li
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Heng Yang
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan Province, China
| | - Huaran Shi
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Wei Chen
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
6
|
Chen W, Li J, Li J, Zhang J, Zhang J. Roles of Non-Coding RNAs in Virus-Host Interaction About Pathogenesis of Hand-Foot-Mouth Disease. Curr Microbiol 2022; 79:247. [PMID: 35834056 PMCID: PMC9281230 DOI: 10.1007/s00284-022-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Noncoding RNAs (ncRNAs) represent the largest and main transcriptome products and play various roles in the biological activity of cells and pathological processes. Accumulating evidence shows that microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) are important ncRNAs that play vital regulatory roles during viral infection. Hand-foot-mouth disease (HFMD) virus causes hand-foot-mouth disease, and is also associated with various serious complications and high mortality. However, there is currently no effective treatment. In this review, we focus on advances in the understanding of the modulatory role of ncRNAs during HFMD virus infection. Specifically, we discuss the generation, classification, and regulatory mechanisms of miRNA, lncRNA, and circRNA in the interaction between virus and host, with a particular focus on their influence with viral replication and infection. Analysis of these underlying mechanisms can help provide a foundation for the development of ncRNA-based antiviral therapies.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| | - Jinwei Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jing Li
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jiayu Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Chenggong District, No. 727, Southern Jingming Road, Kunming, Yunnan Province, 650500, People's Republic of China.
| |
Collapse
|
7
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
8
|
Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci 2022; 23:ijms23094628. [PMID: 35563023 PMCID: PMC9101002 DOI: 10.3390/ijms23094628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) caused by Coxsackievirus Group B5 (CVB5) is one of the most common herpetic diseases in human infants and children. The pathogenesis of CVB5 remains unknown. Circular RNAs (CircRNAs), as novel noncoding RNAs, have been shown to play a key role in many pathogenic processes in different species; however, their functions during the process of CVB5 infection remain unclear. In the present study, we investigated the expression profiles of circRNAs using RNA sequencing technology in CVB5-infected and mock-infected human rhabdomyosarcoma cells (CVB5 virus that had been isolated from clinical specimens). In addition, several differentially expressed circRNAs were validated by RT-qPCR. Moreover, the innate immune responses related to circRNA-miRNA-mRNA interaction networks were constructed and verified. A total of 5461 circRNAs were identified at different genomic locations in CVB5 infections and controls, of which 235 were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that the differentially expressed circRNAs were principally involved in specific signaling pathways related to ErbB, TNF, and innate immunity. We further predicted that novel_circ_0002006 might act as a molecular sponge for miR-152-3p through the IFN-I pathway to inhibit CVB5 replication, and that novel_circ_0001066 might act as a molecular sponge for miR-29b-3p via the NF-κB pathway and for the inhibition of CVB5 replication. These findings will help to elucidate the biological functions of circRNAs in the progression of CVB5-related HFMD and identify prospective biomarkers and therapeutic targets for this disease.
Collapse
|
9
|
Liao Y, Guo S, Liu G, Qiu Z, Wang J, Yang D, Tian X, Qiao Z, Ma Z, Liu Z. Host Non-Coding RNA Regulates Influenza A Virus Replication. Viruses 2021; 14:v14010051. [PMID: 35062254 PMCID: PMC8779696 DOI: 10.3390/v14010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.
Collapse
Affiliation(s)
- Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Shouqing Guo
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Geng Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Jiamin Wang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Di Yang
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Xiaojing Tian
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Ziling Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (S.G.); (G.L.); (Z.Q.); (J.W.); (D.Y.); (Z.Q.); (Z.M.)
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|