1
|
Chavda VP, Bezbaruah R, Deka K, Nongrang L, Kalita T. The Delta and Omicron Variants of SARS-CoV-2: What We Know So Far. Vaccines (Basel) 2022; 10:1926. [PMID: 36423021 PMCID: PMC9698608 DOI: 10.3390/vaccines10111926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
The world has not yet completely overcome the fear of the havoc brought by SARS-CoV-2. The virus has undergone several mutations since its initial appearance in China in December 2019. Several variations (i.e., B.1.616.1 (Kappa variant), B.1.617.2 (Delta variant), B.1.617.3, and BA.2.75 (Omicron variant)) have emerged throughout the pandemic, altering the virus's capacity to spread, risk profile, and even symptoms. Humanity faces a serious threat as long as the virus keeps adapting and changing its fundamental function to evade the immune system. The Delta variant has two escape alterations, E484Q and L452R, as well as other mutations; the most notable of these is P681R, which is expected to boost infectivity, whereas the Omicron has about 60 mutations with certain deletions and insertions. The Delta variant is 40-60% more contagious in comparison to the Alpha variant. Additionally, the AY.1 lineage, also known as the "Delta plus" variant, surfaced as a result of a mutation in the Delta variant, which was one of the causes of the life-threatening second wave of coronavirus disease 2019 (COVID-19). Nevertheless, the recent Omicron variants represent a reminder that the COVID-19 epidemic is far from ending. The wave has sparked a fervor of investigation on why the variant initially appeared to propagate so much more rapidly than the other three variants of concerns (VOCs), whether it is more threatening in those other ways, and how its type of mutations, which induce minor changes in its proteins, can wreck trouble. This review sheds light on the pathogenicity, mutations, treatments, and impact on the vaccine efficacy of the Delta and Omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Kangkan Deka
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Tutumoni Kalita
- Girijananda Chowdhury Institute of Pharmaceutical Science, Azara, Guwahati 781017, Assam, India
| |
Collapse
|
2
|
Selvavinayagam ST, Yong YK, Joseph N, Hemashree K, Tan HY, Zhang Y, Rajeshkumar M, Kumaresan A, Kalpana R, Kalaivani V, Monika AVD, Suvaithenamudhan S, Kannan M, Murugesan A, Narayanasamy K, Palani S, Larsson M, Shankar EM, Raju S. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B.1.617.2 and Omicron BA.1.1.529 but not with Omicron BA.1.1 and BA.2 variants. Front Public Health 2022; 10:1018399. [PMID: 36211690 PMCID: PMC9540788 DOI: 10.3389/fpubh.2022.1018399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
The rapid spread of SARS-CoV-2 variants in the global population is indicative of the development of selective advantages in emerging virus strains. Here, we performed a case-control investigation of the clinical and demographic characteristics, clinical history, and virological markers to predict disease progression in hospitalized adults for COVID-19 between December 2021 and January 2022 in Chennai, India. COVID-19 diagnosis was made by a commercial TaqPath COVID-19 RT-PCR, and WGS was performed with the Ion Torrent Next Generation Sequencing System. High-quality (<5% of N) complete sequences of 73 Omicron B.1.1.529 variants were randomly selected for phylogenetic analysis. SARS-CoV-2 viral load, number of comorbidities, and severe disease presentation were independently associated with a shorter time-to-death. Strikingly, this was observed among individuals infected with Omicron BA.2 but not among those with the BA.1.1.529, BA.1.1, or the Delta B.1.617.2 variants. Phylogenetic analysis revealed severe cases predominantly clustering under the BA.2 lineage. Sequence analyses showed 30 mutation sites in BA.1.1.529 and 33 in BA.1.1. The mutations unique to BA.2 were T19I, L24S, P25del, P26del, A27S, V213G, T376A, D405N and R408S. Low SARS-CoV-2 viral load among vaccinated individuals infected with Delta B.1.617.2 and the Omicron BA.1.1.529 variant but not with Omicron BA.1.1 or BA.2 suggests that the newer strains are largely immune escape variants. The number of vaccine doses received was independently associated with increased odds of developing asymptomatic disease or recovery. We propose that the novel mutations reported herein could likely bear a significant impact on the clinical characteristics, disease progression, and epidemiological aspects of COVID-19. Surging rates of mutations and the emergence of eclectic variants of SARS-CoV-2 appear to impact disease dynamics.
Collapse
Affiliation(s)
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
| | - Narcisse Joseph
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kannan Hemashree
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | | | | | - Raghu Kalpana
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | | | | | | | - Meganathan Kannan
- Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | | | - Sampath Palani
- Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- Directorate of Public Health and Preventive Medicine, Chennai, India
| |
Collapse
|