1
|
Zheng Y, Li G, Liu K, Luo Q, Sun W, Zhao M. Genetic variation and recombination analysis of the GP5 gene of the porcine reproductive and respiratory syndrome virus in Thailand. Front Vet Sci 2024; 11:1444040. [PMID: 39176398 PMCID: PMC11340500 DOI: 10.3389/fvets.2024.1444040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome (PRRS) is a significant threat to the global swine industry, and its prevalence in Thailand spans over two decades. Methods To understand the genetic variation and recombination of the PRRS virus (PRRSV) GP5 gene in Thailand, we retrieved 726 GP5 gene sequences from the NCBI database. Phylogenetic trees were constructed using the neighbor-joining (NJ) and maximum likelihood (ML) methods, and recombination analysis was performed. Results Homology analysis was conducted on 83 PRRSV-1 and 83 PRRSV-2 strains. Phylogenetic analysis revealed the prevalence of both PRRSV-1 and PRRSV-2 strains in Thailand, with the latter exhibiting wider distribution. PRRSV-1 strains clustered into clades A, D, and H, while PRRSV-2 strains grouped into lineages 1, 5, and sublineage 8.7, further divided into 8.7/HP and 8.7/NA sublineages. Sublineage 8.7/NA strains accounted for a significant proportion of circulating PRRSV-2 strains. Homology analysis showed nucleotide and amino acid similarities ranging from 75.4 to 100.0% and 41.3 to 100.0% for PRRSV-1, and 78.6 to 100.0% and 70.8 to 100.0% for PRRSV-2 strains. Amino acid sequence alignments revealed mutations, insertions, and deletions in PRRSV-1 GP5, and key residue mutations in PRRSV-2 GP5 associated with biological functions. Recombination analysis identified two recombination events within PRRSV-2 sublineage 8.7 strains. Discussion These findings confirm the variability of the GP5 protein. This study enhances our understanding of PRRSV prevalence and genetic variation in Thailand, contributing valuable insights for PRRS prevention and control.
Collapse
Affiliation(s)
- Yajie Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
2
|
Li S, Qiu M, Li S, Li C, Lin H, Qiu Y, Qi W, Feng B, Cui M, Yang S, Zheng W, Shang S, Tian K, Zhu J, Lu Y, Chen N. A chimeric porcine reproductive and respiratory syndrome virus 1 strain containing synthetic ORF2-6 genes can trigger T follicular helper cell and heterologous neutralizing antibody responses and confer enhanced cross-protection. Vet Res 2024; 55:28. [PMID: 38449049 PMCID: PMC10918997 DOI: 10.1186/s13567-024-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
| | - Yu Lu
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|