1
|
Guan R, Wei N, Cao M, Yang JG, Wu R, Li H. Prevalence of three important tick-borne pathogens in ticks and humans in Shaanxi Province, Northwest China. Parasitol Int 2024; 104:102980. [PMID: 39393596 DOI: 10.1016/j.parint.2024.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
The investigation of important prevalent tick-borne pathogens is central to the control of tick-borne diseases. To understand the prevalence of Borrelia burgdorferi s.l., Borrelia miyamotoi, and the Alongshan virus in ticks and patients in Shaanxi Province, China, a total of 670 adult ticks and 524 patient blood samples were collected in the region between 2022 and 2023. In this study, PCR was used to estimate the prevalence of the three pathogens. The results revealed that the overall positive rates of B. burgdorferi s.l, B. miyamotoi, and ALSV infection in the collected ticks were 13.58 %, 2.46 %, and 4.17 %, respectively. Three genospecies of B. burgdorferi s.l. were detected in this study, namely, B. garinii, B. afzelii, and B. bavariensis, with positive rates of 4.63 %, 3.58 %, and 5.37 %, respectively. The prevalence rates of B. miyamotoi, ALSV and B. burgdorferi s.l. in the patients were 0.38 %, 0.95 %, and 15 %, respectively. Moreover, B. burgdorferi s.l. and ALSV coinfection was also detected in three patients. Evolutionary analysis revealed that the isolate of B. miyamotoi belongs to the Asian type (Siberian type) and that of ALSV is closely related to that of Finland. To our knowledge, this is the first report on B. miyamotoi and ALSV detection in both ticks and humans in Shaanxi Province; the prevalence indicates that the regions in this province might be endemic areas. The results also suggest that humans in these regions are at risk of infection with these three tick-borne diseases.
Collapse
Affiliation(s)
- Rui Guan
- Department of Inspection, Hanzhong People's Hospital, Hanzhong, PR China
| | - Na Wei
- Department of Inspection, Hanzhong People's Hospital, Hanzhong, PR China
| | - Meng Cao
- Department of Inspection, Hanzhong People's Hospital, Hanzhong, PR China
| | - Jian-Gong Yang
- Department of Inspection, Hanzhong People's Hospital, Hanzhong, PR China
| | - Ru Wu
- Department of Transfusion, Hanzhong People's Hospital, Hanzhong, PR China
| | - Hui Li
- Department of Transfusion, Hanzhong People's Hospital, Hanzhong, PR China.
| |
Collapse
|
2
|
Wu Y, Zhou Q, Mao M, Chen H, Qi R. Diversity of species and geographic distribution of tick-borne viruses in China. Front Microbiol 2024; 15:1309698. [PMID: 38476950 PMCID: PMC10929907 DOI: 10.3389/fmicb.2024.1309698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Tick-borne pathogens especially viruses are continuously appearing worldwide, which have caused severe public health threats. Understanding the species, distribution and epidemiological trends of tick-borne viruses (TBVs) is essential for disease surveillance and control. Methods In this study, the data on TBVs and the distribution of ticks in China were collected from databases and literature. The geographic distribution of TBVs in China was mapped based on geographic locations of viruses where they were prevalent or they were detected in vector ticks. TBVs sequences were collected from The National Center for Biotechnology Information and used to structure the phylogenetic tree. Results Eighteen TBVs from eight genera of five families were prevalent in China. Five genera of ticks played an important role in the transmission of TBVs in China. According to phylogenetic analysis, some new viral genotypes, such as the Dabieshan tick virus (DTV) strain detected in Liaoning Province and the JMTV strain detected in Heilongjiang Province existed in China. Discussion TBVs were widely distributed but the specific ranges of viruses from different families still varied in China. Seven TBVs belonging to the genus Orthonairovirus of the family Nairoviridae such as Nairobi sheep disease virus (NSDV) clustered in the Xinjiang Uygur Autonomous Region (XUAR) and northeastern areas of China. All viruses of the family Phenuiviridae except Severe fever with thrombocytopenia syndrome virus (SFTSV) were novel viruses that appeared in the last few years, such as Guertu virus (GTV) and Tacheng tick virus 2 (TcTV-2). They were mainly distributed in the central plains of China. Jingmen tick virus (JMTV) was distributed in at least fourteen provinces and had been detected in more than ten species of tick such as Rhipicephalus microplus and Haemaphysalis longicornis, which had the widest distribution and the largest number of vector ticks among all TBVs. Parainfluenza virus 5 (PIV5) and Lymphatic choriomeningitis virus (LCMV) were two potential TBVs in Northeast China that could cause serious diseases in humans or animals. Ixodes persulcatus carried the highest number of TBVs, followed by Dermacentor nuttalli and H. longicornis. They could carry as many as ten TBVs. Three strains of Tick-borne encephalitis (TBEV) from Inner Mongolia Province clustered with ones from Russia, Japan and Heilongjiang Province, respectively. Several SFTSV strains from Zhejiang Province clustered with strains from Korea and Japan. Specific surveillance of dominant TBVs should be established in different areas in China.
Collapse
Affiliation(s)
| | | | | | | | - Rui Qi
- Institute of Microbiome Frontiers and One Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Wang R, Liu S, Sun H, Xu C, Wen Y, Wu X, Zhang W, Nie K, Li F, Fu S, Yin Q, He Y, Xu S, Liang G, Deng L, Wei Q, Wang H. Metatranscriptomics Reveals the RNA Virome of Ixodes Persulcatus in the China-North Korea Border, 2017. Viruses 2023; 16:62. [PMID: 38257762 PMCID: PMC10819109 DOI: 10.3390/v16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, numerous viruses have been identified from ticks, and some have been linked to clinical cases of emerging tick-borne diseases. Chinese northeast frontier is tick infested. However, there is a notable lack of systematic monitoring efforts to assess the viral composition in the area, leaving the ecological landscape of viruses carried by ticks not clear enough. Between April and June 2017, 7101 ticks were collected to perform virus surveillance on the China-North Korea border, specifically in Tonghua, Baishan, and Yanbian. A total of 2127 Ixodes persulcatus were identified. Further investigation revealed the diversity of tick-borne viruses by transcriptome sequencing of Ixodes persulcatus. All ticks tested negative for tick-borne encephalitis virus. Transcriptome sequencing expanded 121 genomic sequence data of 12 different virus species from Ixodes persulcatus. Notably, a new segmented flavivirus, named Baishan Forest Tick Virus, were identified, closely related to Alongshan virus and Harz mountain virus. Therefore, this new virus may pose a potential threat to humans. Furthermore, the study revealed the existence of seven emerging tick-borne viruses dating back to 2017. These previously identified viruses included Mudanjiang phlebovirus, Onega tick phlebovirus, Sara tick phlebovirus, Yichun mivirus, and three unnamed viruses (one belonging to the Peribunyaviridae family and the other two belonging to the Phenuiviridae family). The existence of these emerging tick-borne viruses in tick samples collected in 2017 suggests that their history may extend further than previously recognized. This study provides invaluable insights into the virome of Ixodes persulcatus in the China-North Korea border region, enhancing our ongoing efforts to manage the risks associated with tick-borne viruses.
Collapse
Affiliation(s)
- Ruichen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Shenghui Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Hongliang Sun
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.S.); (X.W.)
| | - Chongxiao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Yanhan Wen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Xiwen Wu
- Changchun Institute of Biological Products Co., Ltd., Changchun 130012, China; (H.S.); (X.W.)
| | - Weijia Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Kai Nie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Qikai Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Ying He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Songtao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Guodong Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| | - Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.W.); (S.L.); (C.X.); (Y.W.); (W.Z.); (K.N.); (F.L.); (S.F.); (Q.Y.); (Y.H.); (S.X.); (G.L.)
| |
Collapse
|
4
|
Ali SL, Ali A, Alamri A, Baiduissenova A, Dusmagambetov M, Abduldayeva A. Genomic annotation for vaccine target identification and immunoinformatics-guided multi-epitope-based vaccine design against Songling virus through screening its whole genome encoded proteins. Front Immunol 2023; 14:1284366. [PMID: 38090579 PMCID: PMC10715409 DOI: 10.3389/fimmu.2023.1284366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Songling virus (SGLV), a newly discovered tick-borne orthonairovirus, was recently identified in human spleen tissue. It exhibits cytopathic effects in human hepatoma cells and is associated with clinical symptoms including headache, fever, depression, fatigue, and dizziness, but no treatments or vaccines exist for this pathogenic virus. In the current study, immunoinformatics techniques were employed to identify potential vaccine targets within SGLV by comprehensively analyzing SGLV proteins. Four proteins were chosen based on specific thresholds to identify B-cell and T-cell epitopes, validated through IFN-γ epitopes. Six overlap MHC-I, MHC-II, and B cell epitopes were chosen to design a comprehensive vaccine candidate, ensuring 100% global coverage. These structures were paired with different adjuvants for broader protection against international strains. Vaccine constructions' 3D models were high-quality and validated by structural analysis. After molecular docking, SGLV-V4 was selected for further research due to its lowest binding energy (-66.26 kcal/mol) and its suitable immunological and physiochemical properties. The vaccine gene is expressed significantly in E. coli bacteria through in silico cloning. Immunological research and MD simulations supported its molecular stability and robust immune response within the host cell. These findings can potentially be used in designing safer and more effective experimental SGLV-V4 vaccines.
Collapse
Affiliation(s)
- S. Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aliya Baiduissenova
- Department of Microbiology and Virology, Astana Medical University, Astana, Kazakhstan
| | - Marat Dusmagambetov
- Department of Microbiology and Virology, Astana Medical University, Astana, Kazakhstan
| | | |
Collapse
|
5
|
Stegmüller S, Qi W, Torgerson PR, Fraefel C, Kubacki J. Hazard potential of Swiss Ixodes ricinus ticks: Virome composition and presence of selected bacterial and protozoan pathogens. PLoS One 2023; 18:e0290942. [PMID: 37956168 PMCID: PMC10642849 DOI: 10.1371/journal.pone.0290942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ticks play an important role in transmitting many different emerging zoonotic pathogens that pose a significant threat to human and animal health. In Switzerland and abroad, the number of tick-borne diseases, in particular tick-borne encephalitis (TBE), has been increasing over the last few years. Thus, it remains essential to investigate the pathogen spectrum of ticks to rapidly detect emerging pathogens and initiate the necessary measures. To assess the risk of tick-borne diseases in different regions of Switzerland, we collected a total of 10'286 ticks from rural and urban areas in ten cantons in 2021 and 2022. Ticks were pooled according to species, developmental stage, gender, and collection site, and analyzed using next generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). The metagenomic analysis revealed for the first time the presence of Alongshan virus (ALSV) in Swiss ticks. Interestingly, the pool-prevalence of ALSV was higher than that of tick-borne encephalitis virus (TBEV). Furthermore, several TBEV foci have been identified and pool prevalence of selected non-viral pathogens determined.
Collapse
Affiliation(s)
- Stefanie Stegmüller
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Litov AG, Okhezin EV, Kholodilov IS, Polienko AE, Karganova GG. Quantitative Polymerase Chain Reaction System for Alongshan Virus Detection. Methods Protoc 2023; 6:79. [PMID: 37736962 PMCID: PMC10514782 DOI: 10.3390/mps6050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
The recently discovered Jingmenvirus group includes viruses with a segmented genome, RNA of a positive polarity, and several proteins with distant homology to the proteins of the members of the genus Orthoflavivirus. Some Jingmenvirus group members, namely the Alongshan virus (ALSV) and Jingmen tick virus, are reported to be tick-borne human pathogens that can cause a wide variety of symptoms. The ALSV is widely distributed in Eurasia, yet no reliable assay that can detect it exists. We describe a qPCR system for ALSV detection. Our data showed that this system can detect as little as 104 copies of the ALSV in a sample. The system showed no amplification of the common tick-borne viruses circulating in Eurasia, i.e., the Yanggou tick virus-which is another Jingmenvirus group member-or some known members of the genus Orthoflavivirus. The qPCR system was tested and had no nonspecific signal for the Ixodes ricinus, I. persulcatus, Dermacentor reticulatus, D. marginatus, Haemaphysalis concinna, and H. japonica ticks. The qPCR system had no nonspecific signal for human and sheep serum as well. Overall, the qPCR system described here can be used for reliable and quantitative ALSV detection.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| |
Collapse
|
7
|
Bai Y, Li Y, Liu W, Li J, Tian F, Liu L, Han X, Tong Y. Analysis of the diversity of tick-borne viruses at the border areas in Liaoning Province, China. Front Microbiol 2023; 14:1179156. [PMID: 37200913 PMCID: PMC10187663 DOI: 10.3389/fmicb.2023.1179156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/20/2023] Open
Abstract
Ticks play a significant role in transmitting arboviruses, which pose a risk to human and animal health. The region of Liaoning Province, China, with abundant plant resources with multiple tick populations, has reported several tick-borne diseases. However, there remains a scarcity of research on the composition and evolution of the tick virome. In this study, we conducted the metagenomic analysis of 561 ticks in the border area of Liaoning Province in China and identified viruses related to known diseases in humans and animals, including severe fever with thrombocytopenia syndrome virus (SFTSV) and nairobi sheep disease virus (NSDV). Moreover, the groups of tick viruses were also closely related to the families of Flaviviridae, Parvoviridae, Phenuiviridae, and Rhabdoviridae. Notably, the Dabieshan tick virus (DBTV) of the family Phenuiviridae was prevalent in these ticks, with the minimum infection rate (MIR) of 9.09%, higher than previously reported in numerous provinces in China. In addition, sequences of tick-borne viruses of the family Rhabdoviridae have first been reported from the border area of Liaoning Province, China, after being described from Hubei Province, China. This research furthered the insight into pathogens carried by ticks in the northeastern border areas of China, offering epidemiological information for possible forthcoming outbreaks of infectious diseases. Meanwhile, we provided an essential reference for assessing the risk of tick bite infection in humans and animals, as well as for exploring into the evolution of the virus and the mechanisms of species transmission.
Collapse
Affiliation(s)
- Yu Bai
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yang Li
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenli Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fengjuan Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lei Liu
- Jiamusi University School of Basic Medicine, Jiamusi, China
- *Correspondence: Lei Liu,
| | - Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Xiaohu Han,
| | - Yigang Tong
- Jiamusi University School of Basic Medicine, Jiamusi, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong,
| |
Collapse
|