1
|
Park J, Lee N, Kim H, Kim D, Shin S, Choi S, Choi GJ, Son H. A mitochondrial NAD/NADH kinase governs fungal virulence through an oxidative stress response and arginine biosynthesis in Fusarium graminearum. Microbiol Res 2024; 283:127692. [PMID: 38508088 DOI: 10.1016/j.micres.2024.127692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
NADP/NADPH plays an indispensable role in cellular metabolism, serving as a pivotal cofactor in numerous enzymatic processes involved in anabolic pathways, antioxidant defense, and the biosynthesis of essential cellular components. NAD/NADH kinases (NADKs) phosphorylate NAD/NADH, constituting the sole de novo synthetic pathway for NADP/NADPH generation. Despite the pivotal role of NADP/NADPH in cellular functions, the physiological role of NADK remains largely unexplored in filamentous fungi. In this study, we identified three putative NADKs in Fusarium graminearum-FgNadk1, FgNadk2, and FgNadk3-responsible for NAD/NADH phosphorylation. NADK-mediated formation of intracellular NADPH proved crucial for vegetative growth, sexual reproduction, and virulence. Specifically, FgNadk2, the mitochondrial NADK, played a role in oxidative stress resistance and the maintenance of mitochondrial reactive oxygen species levels. Moreover, the deletion of FgNADK2 resulted in arginine auxotrophy, contributing to the reduced fungal virulence. These findings underscore the necessity of mitochondrial NADK in fungal virulence in F. graminearum, revealing its involvement in mitochondrial redox homeostasis and the arginine biosynthetic pathway. This study provides critical insights into the interconnectedness of metabolic pathways essential for fungal growth, stress response, and pathogenicity.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun Kim
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dohun Kim
- Childern's Medical Center Research Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Domènech-Eres R, Jaeckel M, Hadeler B, Lienemann T, Lutz T, Heinze C. A GFP-expressing minigenome of a chrysovirus replicating in fungi. Virology 2024; 591:109987. [PMID: 38219372 DOI: 10.1016/j.virol.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
The Fusarium graminearum virus China 9 (FgV-ch9) is a member of the genus Betachrysovirus in the Chrysoviridae family and causes hypovirulence in its host, Fusarium graminearum, the causal agent of Fusarium head blight. Although insights into viral biology of FgV-ch9 have expanded in recent years, questions regarding the function of virus-encoded proteins, cis-acting elements, and virus transmission are yet to be answered. Therefore, we developed a tool for the establishment of an artificial 6th segment of FgV-ch9, which encodes a GFP gene flanked by the non-translated regions of FgV-ch9 segment 1. Subsequently, we have proved successful encapsidation of this artificial segment into virus particles as well as its horizontal transmission. Expression of GFP was further verified via immunoassay and life cell imaging. Thus far, we were able to establish for the first time a mini-replicon system for segmented dsRNA viruses replicating in fungi.
Collapse
Affiliation(s)
- Robert Domènech-Eres
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Mareike Jaeckel
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Birgit Hadeler
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Tim Lienemann
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Tobias Lutz
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Cornelia Heinze
- University of Hamburg, Institute of Plant Science and Microbiology, Molecular Phytopathology, Ohnhorststr. 18, 22609, Hamburg, Germany.
| |
Collapse
|
3
|
Zou C, Cao X, Zhou Q, Yao Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses 2024; 16:253. [PMID: 38400029 PMCID: PMC10891527 DOI: 10.3390/v16020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chrysoviruses are isometric virus particles (35-50 nm in diameter) with a genome composed of double-stranded RNAs (dsRNA). These viruses belonged to the Chrysoviridae family, named after the first member isolated from Penicillium chrysogenum. Phylogenetic classification has divided the chrysoviruses into Alphachrysovirus and Betachrysovirus genera. Currently, these chrysoviruses have been found to infect many fungi, including Fusarium species, and cause changes in the phenotype and decline in the pathogenicity of the host. Thus, it is a microbial resource with great biocontrol potential against Fusarium species, causing destructive plant diseases and substantial economic losses. This review provides a comprehensive overview of three chrysovirus isolates (Fusarium graminearum virus 2 (FgV2), Fusarium graminearum virus-ch9 (FgV-ch9), and Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1)) reported to decline the pathogenicity of Fusarium hosts. It also summarizes the recent studies on host response regulation, host RNA interference, and chrysovirus transmission. The information provided in the review will be a reference for analyzing the interaction of Fusarium species with chrysovirus and proposing opportunities for research on the biocontrol of Fusarium diseases. Finally, we present reasons for conducting further studies on exploring the interaction between chrysoviruses and Fusarium and improving the accumulation and transmission efficiency of these chrysoviruses.
Collapse
Affiliation(s)
- Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Xueying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Qiujuan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Ziting Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
- Plant Protection Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007, China
| |
Collapse
|
4
|
Sato Y, Suzuki N. Continued mycovirus discovery expanding our understanding of virus lifestyles, symptom expression, and host defense. Curr Opin Microbiol 2023; 75:102337. [PMID: 37343415 DOI: 10.1016/j.mib.2023.102337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
High-throughput sequencing technologies have greatly expanded the RNA virome in general and have led to an exponential increase in new fungal viruses, also known as mycoviruses. Mycoviruses are omnipresent in fungi and usually induce symptomless infections. Some mycoviruses infecting fungi pathogenic to plants, insects, and mammals are known to modify host virulence positively and negatively and attract particular interests. In addition, fungal viruses continue to provide intriguing research materials and themes that lead to discoveries of peculiar viruses as infectious entities and insights into virus evolution and diversity. In this review, we outline the diversity and neolifestyle of recently discovered fungal RNA viruses, and phenotypic alterations induced by them. Furthermore, we discuss recent advances in research regarding the fungal antiviral defense and viral counterdefense, which are closely associated with host phenotype alterations. We hope that this article will enhance understanding of the interesting and growing fungal virology field.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chu-ou, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|