1
|
Benjamin MM, Hanna GS, Dickinson CF, Choo YM, Wang X, Downs-Bowen JA, De R, McBrayer TR, Schinazi RF, Nielson SE, Hevel JM, Pandey P, Doerksen RJ, Townsend DM, Zhang J, Ye Z, Wyer S, Bialousow L, Hamann MT. Cannabinoid-Inspired Inhibitors of the SARS-CoV-2 Coronavirus 2'- O-Methyltransferase (2'- O-MTase) Non-Structural Protein (Nsp10-16). Molecules 2024; 29:5081. [PMID: 39519722 PMCID: PMC11547505 DOI: 10.3390/molecules29215081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The design and synthesis of antiviral compounds were guided by computationally predicted data against highly conserved non-structural proteins (Nsps) of the SARS-CoV-2 coronavirus. Chromenephenylmethanone-1 (CPM-1), a novel biphenylpyran (BPP), was selected from a unique natural product library based on in silico docking scores to coronavirus Nsps with high specificity to the methyltransferase protein (2'-O-MTase, Nsp10-16), which is responsible for viral mRNA maturation and host innate immune response evasion. To target the 2'-O-MTase, CPM-1, along with intermediate BPP regioisomers, tetrahydrophenylmethanones (TPMs), were synthesized and structurally validated via nuclear magnetic resonance (NMR) data and DP4+ structure probability analyses. To investigate the activity of these BPPs, the following in vitro assays were conducted: SARS-CoV-2 inhibition, biochemical target validation, mutagenicity, and cytotoxicity. CPM-1 possessed notable activity against SARS-CoV-2 with 98.9% inhibition at 10 µM and an EC50 of 7.65 µM, as well as inhibition of SARS-CoV-2's 2'-O-MTase (expressed and purified) with an IC50 of 1.5 ± 0.2 µM. In addition, CPM-1 revealed no cytotoxicity (CC50 of >100 µM) or mutagenicity (no frameshift or base-pair mutations). This study demonstrates the potential of computational modeling for the discovery of natural product prototypes followed by the design and synthesis of drug leads to inhibit the SARS-CoV-2 2'-O-MTase.
Collapse
Affiliation(s)
- Menny M. Benjamin
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - George S. Hanna
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Cody F. Dickinson
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Xiaojuan Wang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jessica A. Downs-Bowen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | - Tamara R. McBrayer
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, 1760 Haygood Drive, HSRB-1, Atlanta, GA 30322, USA
| | | | - Joan M. Hevel
- Department of Chemistry & Biochemistry, Logan, UT 84322, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Robert J. Doerksen
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Danyelle M. Townsend
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St, DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St, DD410, Charleston, SC 29425, USA
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St, DD410, Charleston, SC 29425, USA
| | - Scott Wyer
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Lucas Bialousow
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
| | - Mark T. Hamann
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; (M.M.B.)
- Department of Public Health Sciences, Medical University of South Carolina,135 Cannon St, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
3
|
Ahmed-Belkacem R, Sutto-Ortiz P, Delpal A, Troussier J, Canard B, Vasseur JJ, Decroly E, Debart F. 5'-cap RNA/SAM mimetic conjugates as bisubstrate inhibitors of viral RNA cap 2'-O-methyltransferases. Bioorg Chem 2024; 143:107035. [PMID: 38199140 DOI: 10.1016/j.bioorg.2023.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Collapse
Affiliation(s)
| | | | - Adrien Delpal
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | | | | | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|