1
|
Nankivil D, Cottaris NP, Brainard DH. Theoretical impact of chromatic aberration correction on visual acuity. BIOMEDICAL OPTICS EXPRESS 2024; 15:3265-3284. [PMID: 38855664 PMCID: PMC11161344 DOI: 10.1364/boe.516049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024]
Abstract
It has been known for more than 220 years that the image quality of the human eye is significantly degraded by chromatic aberrations. Recently, it was shown experimentally that correcting chromatic aberrations results in a 0.2- to 0.8-line improvement in visual acuity. Here we ask, is this expected? We developed tools that enable simulations of the optical impact of physiologically relevant amounts of chromatic aberration in real human eyes and combined these with tools that compute the visual acuity of an ideal observer. This allows us to characterize the theoretical impact of chromatic aberration correction on visual acuity. Results indicate a substantive improvement of 0.4- to 2-lines in ideal observer visual acuity with chromatic aberration correction. Ideal observer thresholds benefit significantly more from correction of longitudinal than correction of transverse chromatic aberration. Finally, improvements in ideal observer visual acuity are greater for subjects with less monochromatic aberration, such that subjects with better baseline optical quality benefit most from correction of chromatic aberrations.
Collapse
Affiliation(s)
- Derek Nankivil
- Johnson & Johnson Vision Care Inc., Research & Development, 7500 Centurion Parkway, Jacksonville, FL 32256, USA
| | - Nicolas P Cottaris
- Department of Psychology, University of Pennsylvania, Goddard Laboratories, Philadelphia, PA 19104, USA
| | - David H Brainard
- Department of Psychology, University of Pennsylvania, Goddard Laboratories, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Wen Y, Dai B, Zhang X, Zhu H, Xie C, Xia J, Sun Y, Zhu M, Tong J, Shen Y. Retinal Transcriptomics Analysis Reveals the Underlying Mechanism of Disturbed Emmetropization Induced by Wavelength Defocus. Curr Eye Res 2022; 47:908-917. [PMID: 35225751 DOI: 10.1080/02713683.2022.2048395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Wavelength signals play a vital role in refractive development. This study aimed to explore the retinal transcriptome signature in these processes. METHODS Guinea pigs were randomly divided into three groups exposed to white, blue, or green environmental light for eight weeks. Refraction and axial length were evaluated every 4 weeks, and the retinal transcriptome was profiled at 8 weeks. RESULTS Compared with the white group, ocular refraction significantly decreased and ocular axial length significantly extended in the green group whereas these parameters showed opposite trends in the blue group. RNA-sequencing showed that, compared with the white group, 184 and 171 differentially expressed genes (DEGs) were found in the blue and green groups, respectively. Among these DEGs, only 31 overlapped. These two sets of DEGs were enriched in distinct biological processes and pathways. There were 268 DEGs between the blue and green groups, which were primarily enriched in the extracellular matrix, and metabolism, receptor activity, and ion binding processes. In addition, nine human genes, including ECEL1, CHRND, SHBG, PRSS56, OVOL1, RDH5, WNT7B, PEBP4, CA12, were identified to be related to myopia development and wavelength response, indicating the potential role of these genes in human wavelength-induced myopia. CONCLUSIONS In this study, we identified retinal targets and pathways involved in the response to wavelength signals in emmetropization.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binbin Dai
- Department of Ophthalmology, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Xia
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Sun
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Swiatczak B, Schaeffel F. "Emmetropic, but not myopic human eyes distinguish positive defocus from calculated defocus in monochromatic red light". Vision Res 2021; 192:107974. [PMID: 34875443 DOI: 10.1016/j.visres.2021.107974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Studies in animal models have provided evidence that broadband light and chromatic cues are necessary for successful emmetropization. We have studied this question in young human subjects by measuring short-term changes in axial length when they watched movies with calculated defocus (2.5D) or optically defocused movies (+2.5D) with red interference filters (620 ± 10 nm). Since filters cut luminance down by a factor of 10, a control experiment with neutral density filters (ND 1.0) was done. Ten myopes and 10 emmetropes were studied. Four experimental conditions were tested on two separate days. On the first day, movies with calculated defocus, and defocused by positive lenses were watched with ND filters. On the second day, movies with the same defocus patterns were watched with the red filters. Movies were presented on a large TV screen (LG OLED65C9, 65″) in a dark room at 2 m distance for 30 min. Changes in axial length before and after each stimulation were measured with the Lenstar (LS 900, with autopositioning system; Haag-Streit). Interestingly, the effects of calculated defocus or optical positive defocus on axial length were suppressed by 1.0 ND filters in myopes and emmetropes, with no clear trend. In contrast, narrow-band red light suppressed eye elongation with calculated defocus but not eye shortening with positive defocus in emmetropes. In myopes, as previously found in white light, there was a trend of axial eye elongation with positive lenses. In conclusion, the effect of positive lenses on eye growth did not require chromatic cues.
Collapse
Affiliation(s)
- Barbara Swiatczak
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Tian T, Zou L, Wang S, Liu R, Liu H. The Role of Dopamine in Emmetropization Modulated by Wavelength and Temporal Frequency in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34546324 PMCID: PMC8458992 DOI: 10.1167/iovs.62.12.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Wavelength and temporal frequency have been found to influence refractive development. This study investigated whether retinal dopamine (DA) plays a role in these processes. Methods Guinea pigs were randomly divided into nine groups that received different lighting conditions for 4 weeks, as follows: white, green, or blue light at 0, 0.5, or 20.0 Hz. Refractions and axial lengths were measured using streak retinoscopy and A-scan ultrasound imaging. DA and its metabolites were measured by high-pressure liquid chromatography-electrochemical detection. Results At 0 Hz, green and blue light produced myopic and hyperopic shifts compared with that of white light. At 0.5 Hz, no significant changes were observed compared with those of green or blue light at 0 Hz, whereas white light at 0.5 Hz induced a myopic shift compared with white light at 0 or 20 Hz. At 20 Hz, green and blue light acted like white light. Among all levels of DA and its metabolites, only vitreous 3, 4-dihydroxyphenylacetic acid (DOPAC) levels and retinal DOPAC/DA ratios were dependent on wavelength, frequency, and their interaction. Specifically, retinal DOPAC/DA ratios were positively correlated with refractions in white and green light conditions. However, blue light (0, 0.5, and 20.0 Hz) produced hyperopic shifts but decreased vitreous DOPAC levels and retinal DOPAC/DA ratios. Conclusions The retinal DOPAC/DA ratio, indicating the metabolic efficiency of DA, is correlated with ocular growth. It may underlie myopic shifts from light exposure with a long wavelength and low temporal frequency. However, different biochemical pathways may contribute to the hyperopic shifts from short wavelength light.
Collapse
Affiliation(s)
- Tian Tian
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Leilei Zou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Shu Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Rui Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), Shanghai, China
| | - Hong Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Yoon H, Taylor CP, Rucker F. Spectral composition of artificial illuminants and their effect on eye growth in chicks. Exp Eye Res 2021; 207:108602. [PMID: 33930397 DOI: 10.1016/j.exer.2021.108602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023]
Abstract
In broadband light, longitudinal chromatic aberration (LCA) provides emmetropization signals from both wavelength defocus and the resulting chromatic cues. Indoor illuminants vary in their spectral output, potentially limiting the signals from LCA. Our aim is to investigate the effect that artificial illuminants with different spectral outputs have on chick emmetropization with and without low temporal frequency modulation. In Experiment 1, two-week-old chicks were exposed to 0.2 Hz, square-wave luminance modulation for 3 days. There were 4 spectral conditions: LED strips that simulated General Electric (GE) LED "Soft" (n = 13), GE LED "Daylight" (n = 12), a novel "Equal" condition (n = 12), and a novel "High S" condition (n = 10). These conditions were all tested at a mean level of 985 lux. In Experiment 2, the effect of intensity on the "Equal" condition was tested at two other light levels (70 lux: n = 10; 680 lux: n = 7). In Experiment 3, the effect of temporal modulation on the "Equal" condition was tested by comparing the 0.2 Hz condition with 0 Hz (steady). Significant differences were found in axial growth across lighting conditions. At 985 lux, birds exposed to the "Equal" condition showed a greater reduction in axial growth (both p < 0.01) and a greater hyperopic shift compared to "Soft" and "Daylight" (both p < 0.01). The "High S" birds experienced more axial growth compared to "Equal" (p < 0.01) but less than in "Soft" and "Daylight" (p < 0.01). Axial changes in "Equal" were only observed at 985 lux with 0.2 Hz temporal modulation, and not with lower light levels or steady light. We conclude that axial growth and refraction were dependent on the lighting condition in a manner predicted by wavelength defocus signals arising from LCA.
Collapse
Affiliation(s)
- Hannah Yoon
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, MA, United States
| | - Christopher P Taylor
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, MA, United States
| | - Frances Rucker
- New England College of Optometry, Department of Biomedical Science and Disease, Boston, MA, United States.
| |
Collapse
|
6
|
Rucker FJ, Eskew RT, Taylor C. Signals for defocus arise from longitudinal chromatic aberration in chick. Exp Eye Res 2020; 198:108126. [PMID: 32717338 DOI: 10.1016/j.exer.2020.108126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Chicks respond to two signals from longitudinal chromatic aberration (LCA): a wavelength defocus signal and a chromatic signal. Wavelength defocus predicts reduced axial eye growth in monochromatic short-wavelength light, compared to monochromatic long-wavelength light. Wavelength defocus may also influence growth in broadband light. In contrast, a chromatic signal predicts increased growth when short-wavelength contrast > long-wavelength contrast, but only when light is broadband. We aimed to investigate the influence of blue light, temporal frequency and contrast on these signals under broadband conditions. Starting at 12 to 13 days-old, 587 chicks were exposed to the experimental illumination conditions for three days for 8h/day and spent the remainder of their day in the dark. The stimuli were flickering lights, with a temporal frequency of 0.2 or 10 Hz, low (30%) or high contrast (80%), and a variety of ratios of cone contrast simulating the effects of defocus with LCA. There were two color conditions, with blue contrast (bPlus) and without (bMinus). Stimuli in the "bPlus" condition varied the amounts of long- (L), middle- (M_) and double (D-) cone contrast, relative to short- (S-) and (UV-) cone contrast, to simulate defocus. Stimuli in the "bMinus" condition only varied the relative modulations of the L + D vs. M cones. In all cases, the average of the stimuli was white, with an illuminance of 777 lux, with cone contrast created through temporal modulation. A Lenstar LS 900 and a Hartinger refractometer were used to measure ocular components and refraction. Wavelength defocus signals with relatively high S-cone contrast resulted in reduced axial growth, and more hyperopic refractions, under low-frequency conditions (p = 0.002), in response to the myopic defocus of blue light. Chromatic signals with relatively high S-cone contrast resulted in increased axial growth and more myopic refractions, under high frequency, low contrast, conditions (p < 0.001). We conclude that the chromatic signals from LCA are dependent on the temporal frequency, phase, and relative contrast of S-cone temporal modulation, and recommend broadband spectral and temporal environments, such as the outdoor environment, to optimize the signals-for-defocus in chick.
Collapse
Affiliation(s)
- Frances J Rucker
- New England College of Optometry, 424 Beacon Street, Boston, MA, 02115, United States.
| | - Rhea T Eskew
- Northeastern University, 360 Huntington Ave, Boston, MA, 02115, United States
| | - Christopher Taylor
- New England College of Optometry, 424 Beacon Street, Boston, MA, 02115, United States
| |
Collapse
|
7
|
Accommodative response in children with attention deficit hyperactivity disorder (ADHD): the influence of accommodation stimulus and medication. Graefes Arch Clin Exp Ophthalmol 2020; 258:1299-1307. [DOI: 10.1007/s00417-020-04645-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/05/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
|
8
|
Short-term effects of text-background color combinations on the dynamics of the accommodative response. Vision Res 2020; 166:33-42. [DOI: 10.1016/j.visres.2019.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022]
|
9
|
Abstract
SIGNIFICANCE In spectrally broad-band light, an emmetropization mechanism in post-natal eyes uses visual cues to modulate the growth of the eye to achieve and maintain near emmetropia. When we restricted available wavelengths to narrow-band blue light, juvenile tree shrews (diurnal dichromatic mammals closely related to primates) developed substantial refractive errors, suggesting that feedback from defocus-related changes in the relative activation of long- and short-wavelength-sensitive cones is essential to maintain emmetropia. PURPOSE The purpose of this study was to examine the effects of narrow-band ambient blue light on refractive state in juvenile tree shrews that had completed initial emmetropization (decrease from hyperopia toward emmetropia). METHODS Animals were raised in fluorescent colony lighting until they began blue-light treatment at 24 days of visual experience, at which age they had achieved age-normal low hyperopia (mean ± SEM refractive error, 1.2 ± 0.5 diopters). Arrays of light-emitting diodes placed atop the cage produced wavelengths of 457 (five animals) or 464 nm (five animals), flickered in a pseudo-random pattern (temporally broad band). A third group of five animals was exposed to steady 464-nm blue light. Illuminance on the floor of the cage was 300 to 500 human lux. Noncycloplegic autorefractor measures were made daily for a minimum of 11 days and up to 32 days. Seven age-matched animals were raised in colony light. RESULTS The refractive state of all blue-treated animals moved outside the 95% confidence limits of the colony-light animals' refractions. Most refractions first moved toward hyperopia. Then the refractive state decreased monotonically and, in some animals, passed through emmetropia, becoming myopic. CONCLUSIONS From the tree shrew cone absorbance spectra, the narrow-band blue light stimulated both long-wavelength-sensitive and short-wavelength-sensitive cones, but the relative activation would not change with the refractive state. This removed feedback from longitudinal chromatic aberration that may be essential to maintain emmetropia.
Collapse
|
10
|
Del Águila-Carrasco AJ, Kruger PB, Lara F, López-Gil N. Aberrations and accommodation. Clin Exp Optom 2019; 103:95-103. [PMID: 31284325 DOI: 10.1111/cxo.12938] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022] Open
Abstract
Modern methods of measuring the refractive state of the eye include wavefront sensors which make it possible to monitor both static and dynamic changes of the ocular wavefront while the eye observes a target positioned at different distances away from the eye. In addition to monitoring the ocular aberrations, wavefront refraction methods allow measurement of the accommodative response while viewing with the eye's habitual chromatic and monochromatic aberrations present, with these aberrations removed, and with specific aberrations added or removed. A large number of experiments describing the effects of accommodation on aberrations and vice versa are reviewed, pointing out the implications for fundamental questions related to the mechanism of accommodation.
Collapse
Affiliation(s)
| | - Philip B Kruger
- College of Optometry, The State University of New York, New York, NY, USA
| | - Francisco Lara
- Vision Science Research Group (CiViUM), Instituto Universitario de Investigación en Envejecimiento (IUIE), University of Murcia, Murcia, Spain
| | - Norberto López-Gil
- Vision Science Research Group (CiViUM), Instituto Universitario de Investigación en Envejecimiento (IUIE), University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Rucker F. Monochromatic and white light and the regulation of eye growth. Exp Eye Res 2019; 184:172-182. [PMID: 31018118 DOI: 10.1016/j.exer.2019.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Experiments employing monochromatic light have been used to investigate the role of longitudinal chromatic aberration (LCA) as possible signals for emmetropization for many years. LCA arising from the dispersion of light, causes differences in the focal length at different wavelengths and can impose defocus (wavelength defocus). Short-wavelength light focuses with a shorter focal length than long-wavelength light and, as such, would be expected to produce a smaller, more hyperopic eye. Emmetropization can respond to wavelength defocus since animals reared in monochromatic light adjust their refractive state relative to that measured in white light. In many species, animals reared in monochromatic light respond as predicted by wavelength defocus, becoming more hyperopic in blue light and more myopic in red light. However, tree shrews and rhesus monkey become more hyperopic in red light, and while tree shrews initially become more hyperopic in blue light, they later become more myopic. This review examines the experiments performed in monochromatic light and highlights the potential differences in protocols affecting the results, including experiment duration, circadian rhythm stimulation, light intensity, bandwidth, humoral factors and temporal sensitivity.
Collapse
Affiliation(s)
- Frances Rucker
- New England College of Optometry, 424 Beacon St, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Taylor CP, Shepard TG, Rucker FJ, Eskew RT. Sensitivity to S-Cone Stimuli and the Development of Myopia. Invest Ophthalmol Vis Sci 2018; 59:4622-4630. [PMID: 30242363 PMCID: PMC6138264 DOI: 10.1167/iovs.18-24113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose Longitudinal chromatic aberration (LCA) is a color signal available to the emmetropization process that causes greater myopic defocus of short wavelengths than long wavelengths. We measured individual differences in chromatic sensitivity to explore the role LCA may play in the development of refractive error. Methods Forty-four observers were tested psychophysically after passing color screening tests and a questionnaire for visual defects. Refraction was measured and only subjects with myopia or hyperopia without severe astigmatism participated. Psychophysical detection thresholds for 3 cyc/deg achromatic, L-, M-, and S-cone-isolating Gabor patches and low-frequency S-cone increment (S+) and decrement (S-) blobs were measured. Parametric Pearson correlations for refractive error versus threshold were calculated and nonparametric bootstrap 95% percentage confidence intervals (BCIs) for r were computed. Results S-cone Gabor detection thresholds were higher than achromatic, L-, and M-cone Gabors. S-cone Gabor thresholds were higher than either S+ or S- blobs. These results are consistent with studies using smaller samples of practiced observers. None of the thresholds for the Gabor stimuli were correlated with refractive error (RE). A negative correlation with RE was observed for both S+ (r = -0.28; P = 0.06; BCI: r = -0.5, -0.04) and S- (r = -0.23; P = 0.13; BCI = -0.46, 0.01) blobs, although this relationship did not reach conventional statistical significance. Conclusions Thresholds for S+ and S- stimuli were negatively related to RE, indicating that myopes may have reduced sensitivity to low spatial frequency S-cone stimuli. This reduced S-cone sensitivity might have played a role in their failure to emmetropize normally.
Collapse
Affiliation(s)
| | - Timothy G. Shepard
- Psychology, Northeastern University, Boston, Massachusetts, United States
| | - Frances J. Rucker
- New England College of Optometry, Boston, Massachusetts, United States
| | - Rhea T. Eskew
- Psychology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Rucker F, Britton S, Spatcher M, Hanowsky S. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes. Invest Ophthalmol Vis Sci 2016; 56:6121-31. [PMID: 26393671 DOI: 10.1167/iovs.15-17238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. METHODS Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. RESULTS Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. CONCLUSIONS Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.
Collapse
|
15
|
Rucker FJ. The role of luminance and chromatic cues in emmetropisation. Ophthalmic Physiol Opt 2013; 33:196-214. [PMID: 23662955 DOI: 10.1111/opo.12050] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE At birth most, but not all eyes, are hyperopic. Over the course of the first few years of life the refraction gradually becomes close to zero through a process called emmetropisation. This process is not thought to require accommodation, though a lag of accommodation has been implicated in myopia development, suggesting that the accuracy of accommodation is an important factor. This review will cover research on accommodation and emmetropisation that relates to the ability of the eye to use colour and luminance cues to guide the responses. RECENT FINDINGS There are three ways in which changes in luminance and colour contrast could provide cues: (1) The eye could maximize luminance contrast. Monochromatic light experiments have shown that the human eye can accommodate and animal eyes can emmetropise using changes in luminance contrast alone. However, by reducing the effectiveness of luminance cues in monochromatic and white light by introducing astigmatism, or by reducing light intensity, investigators have revealed that the eye also uses colour cues in emmetropisation. (2) The eye could compare relative cone contrast to derive the sign of defocus information from colour cues. Experiments involving simulations of the retinal image with defocus have shown that relative cone contrast can provide colour cues for defocus in accommodation and emmetropisation. In the myopic simulation the contrast of the red component of a sinusoidal grating was higher than that of the green and blue component and this caused relaxation of accommodation and reduced eye growth. In the hyperopic simulation the contrast of the blue component was higher than that of the green and red components and this caused increased accommodation and increased eye growth. (3) The eye could compare the change in luminance and colour contrast as the eye changes focus. An experiment has shown that changes in colour or luminance contrast can provide cues for defocus in emmetropisation. When the eye is exposed to colour flicker the eye grows almost twice as much, and becomes more myopic, compared to when the eye is exposed to luminance flicker. SUMMARY Neural responses of the luminance and colour mechanisms direct accommodation and emmetropisation mechanisms to different focal planes. Therefore, it is likely that the set point of refraction and accommodation is dependent on the sensitivity of the eye to changes in spatial and temporal, colour and luminance contrast.
Collapse
Affiliation(s)
- Frances J Rucker
- Department of Biomedical Science and Disease, New England College of Optometry, Boston, USA.
| |
Collapse
|
16
|
Liu R, Qian YF, He JC, Hu M, Zhou XT, Dai JH, Qu XM, Chu RY. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp Eye Res 2011; 92:447-53. [DOI: 10.1016/j.exer.2011.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022]
|
17
|
Wang Y, Kruger PB, Li JS, Lin PL, Stark LR. Accommodation to wavefront vergence and chromatic aberration. Optom Vis Sci 2011; 88:593-600. [PMID: 21317666 PMCID: PMC3081412 DOI: 10.1097/opx.0b013e3182112d99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In this study, we examined the effect of pupil size and LCA on accommodation. METHODS Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m) and two artificial pupil conditions (3 and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). RESULTS Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. CONCLUSIONS Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Vision Sciences, State University of New York, State College of Optometry, New York, NY, USA.
| | | | | | | | | |
Collapse
|
18
|
Pixton BM, Greivenkamp JE. Spherical aberration gauge for human vision. APPLIED OPTICS 2010; 49:5906-5913. [PMID: 20962957 DOI: 10.1364/ao.49.005906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Spherical aberration affects vision in varying degrees depending on pupil size, accommodation, individual eye characteristics, and interpretations by the brain. We developed a spherical aberration gauge to help evaluate the correction potential of spherical aberration in human vision. Variable aberration levels are achieved with laterally shifted polynomial plates from which a user selects a setting that provides the best vision. The aberration is mapped into the pupil of the eye using a simple telescope. Calibration data are given.
Collapse
Affiliation(s)
- Bruce M Pixton
- College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
19
|
Tarrant J, Roorda A, Wildsoet CF. Determining the accommodative response from wavefront aberrations. J Vis 2010; 10:4. [PMID: 20616123 DOI: 10.1167/10.5.4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate some of the methods used to calculate objective refractions from wavefront aberrations, to determine their applicability for accommodation research. A wavefront analyzer was used to measure the ocular aberrations of 13 emmetropes and 17 myopes at distance, and 4 near target vergences: 2, 3, 4, and 5 D. The accommodative response was calculated using the following techniques: least squares fitting (Zernike defocus), paraxial curvature matching (Seidel defocus), and 5 optical quality metrics (PFWc, PFSc, PFCc, NS, and VSMTF). We also evaluated a task-specific method of determining optimum focus that used a through-focus procedure to select the image that best optimized both contrast amplitude and gradient (CAG). Neither Zernike nor Seidel defocus appears to be the best method for determining the accommodative response from wavefront aberrations. When the eye has negative spherical aberration, Zernike defocus tends to underestimate, whereas Seidel defocus tends to overestimate the accommodative response. A better approach is to first determine the best image plane using a suitable optical quality metric and then calculate the accommodative error relative to this plane. Of the metrics evaluated, both NS and VSMTF were reasonable choices, with the CAG algorithm being a less preferred alternate.
Collapse
Affiliation(s)
- Janice Tarrant
- School of Optometry, University of California, Berkeley, CA 94720-2020, USA.
| | | | | |
Collapse
|
20
|
Ohlendorf A, Schaeffel F. Contrast adaptation induced by defocus – A possible error signal for emmetropization? Vision Res 2009; 49:249-56. [DOI: 10.1016/j.visres.2008.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 11/25/2022]
|
21
|
Rucker FJ, Wallman J. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths. Vision Res 2008; 48:1980-91. [PMID: 18585403 DOI: 10.1016/j.visres.2008.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/16/2008] [Accepted: 06/03/2008] [Indexed: 11/17/2022]
Abstract
Chick eyes compensate for defocus imposed by spectacle lenses by making compensatory changes in eye length and choroidal thickness, a laboratory model of emmetropization. To investigate the roles of longitudinal chromatic aberration and of chromatic mechanisms in emmetropization, we examined the participation of different cone classes, and we compared the efficacy of lens compensation under monochromatic illumination with that under white light of the same illuminance to the chick eye. Chicks wore positive or negative 6D or 8D lenses on one eye for 3 days, under either blue (460 nm) or red (620 nm) light at 0.67 lux or under white light at 0.67 or 0.2 lux (all measures are corrected for chick photopic sensitivity). The illumination conditions were chosen to differentially stimulate either the short-wavelength and ultraviolet cones or the long-wavelength and double cones. Measurements are expressed as the relative change: the inter-ocular difference in the amount of change over the 3 days of lens wear. We find that under this low illumination the two components of lens compensation were differentially affected by the monochromatic illumination: in blue light lens compensation was mainly due to changes in eye length, whereas in red light lens compensation was mainly due to changes in choroidal thickness. In general, white light produced better lens compensation than monochromatic illumination. NEGATIVE LENSES: Under white light negative lenses caused an increase in eye length (60 microm) together with a decrease in choroidal thickness (-51 microm) relative to the fellow eye. Under blue light, although there was an increase in eye length (32 microm), there was no change in choroidal thickness (5 microm). In contrast, under red light there was a decrease in choroidal thickness (-62 microm) but no increase in eye length (8 microm). Relative ocular elongation was the same in white and monochromatic light. POSITIVE LENSES: Under white light positive lenses caused a decrease in eye length (-142 microm) together with an increase in choroidal thickness (68 microm) relative to the fellow eye. Under blue light, there was a decrease in eye length (-64 microm), but no change in choroidal thickness (2 microm). In contrast, under red light there was an increase (90 microm) in choroidal thickness but less of a decrease (-36 microm) in eye length. Lens compensation by inhibition of ocular elongation was less effective under monochromatic illumination than under white light (white v red: p=0.003; white v blue p=.014). The differential effects of red and blue light on the choroidal and ocular length compensatory responses suggest that they are driven by different proportions of the cone-types, implying that, although chromatic contrast is not essential for lens compensation and presumably for emmetropization as well, the retinal substrates exist for utilizing chromatic contrast in these compensatory responses. The generally better lens compensation in white than monochromatic illumination suggests that longitudinal chromatic aberration may be used in lens compensation.
Collapse
Affiliation(s)
- Frances J Rucker
- Department of Biology, City College of New York, 138th Street and Convent Avenue, New York, NY 10031, USA.
| | | |
Collapse
|
22
|
Richter HO, Knez I. Superior short-wavelength contrast sensitivity in asthenopics during reflexive readjustments of ocular accommodation. Ophthalmic Physiol Opt 2007; 27:361-72. [PMID: 17584287 DOI: 10.1111/j.1475-1313.2007.00494.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work was to characterize contrast sensitivity (CS) under short-wavelength illumination in 20 symptom-free subjects and eight asthenopics: all had normal unaided or corrected visual acuity and no sign of oculomotor disease. Threshold CS was assessed using the von Békésy tracking method from a viewing distance of 2.4 m (0.40 D). Three counterbalanced tasks required central fixation of black-and-white square-wave gratings (1, 5, 10, 14 and 17 c/deg) presented through a low-pass filter blue lens and (1) a +1.50 D lens; (2) a -1.50 D lens and (3) a 0 D lens, while attempting accommodation to minimize blur. Baseline increases in eye strain, which approached high levels at the end of the experiment, did not differentiate between the two groups of volunteers. All the subjects made evident appropriate accommodation during the low blur condition (0 D); the CS curve exhibited the expected characteristics. When the minus lens was placed before the eyes of the observers the distant square-wave gratings were still seen clearly, the eyes presumably had accommodated by an amount equal to the power of the negative lens. Compared with symptom-free subjects, asthenopics exhibited greater CS at the intermediate spatial frequencies both during the low blur and the minus blur conditions. Asthenopics may exhibit an individualized sensory tendency to react more strongly to shorter wavelengths of light and may therefore reflexively 'drive' their accommodative system harder than symptom-free subjects. This would explain the presence of their asthenopia in the first place. Blue light may, in addition, induce more arousal and higher alertness in this category of participants. This would boost the oculomotor aspects of their performance. These findings add to the current understanding of individual variability in the level of oculomotor loads following strenuous near work.
Collapse
Affiliation(s)
- H O Richter
- Centre for Musculoskeletal Research, Department of Education and Psychology, University of Gävle, SE-801 76 Gävle, Sweden.
| | | |
Collapse
|
23
|
Rucker FJ, Kruger PB. Cone contributions to signals for accommodation and the relationship to refractive error. Vision Res 2006; 46:3079-89. [PMID: 16782165 DOI: 10.1016/j.visres.2006.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/07/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
The accommodation response is sensitive to the chromatic properties of the stimulus, a sensitivity presumed to be related to making use of the longitudinal chromatic aberration of the eye to decode the sign of the defocus. Thus, the relative sensitivity to the long- (L) and middle-wavelength (M) cones may influence accommodation and may also be related to an individual's refractive error. Accommodation was measured continuously while subjects viewed a sine wave grating (2.2c/d) that had different cone contrast ratios. Seven conditions tested loci that form a circle with equal vector length (0.27) at 0, 22.5, 45, 67.5, 90, 120, 145 deg. An eighth condition produced an empty field stimulus (CIE (x,y) co-ordinates (0.4554, 0.3835)). Each of the gratings moved at 0.2 Hz sinusoidally between 1.00 D and 3.00 D for 40s, while the effects of longitudinal chromatic aberration were neutralized with an achromatizing lens. Both the mean level of accommodation and the gain of the accommodative response, to sinusoidal movements of the stimulus, depended on the relative L and M cone sensitivity: Individuals more sensitive to L-cone stimulation showed a higher level of accommodation (p=0.01; F=12.05; ANOVA) and dynamic gain was higher for gratings with relatively more L-cone contrast. Refractive error showed a similar correlation: More myopic individuals showed a higher mean level of accommodation (p<0.01; F=11.42; ANOVA) and showed higher gain for gratings with relatively more L-cone than M-cone contrast (p=0.01; F=10.83 ANOVA). If luminance contrast is maximized by accommodation, long wavelengths will be imaged behind the photoreceptors. Individuals in whom luminance is dominated by L-cones may maximize luminance contrast both by accommodating more, as shown here, and by increased ocular elongation, resulting in myopia, possibly explaining the correlations reported here among relative L/M-cone sensitivity, refractive error and accommodation.
Collapse
Affiliation(s)
- Frances J Rucker
- Schnurmacher Institute for Vision Research, State University of New York, State College of Optometry, 33 West 42nd Street, New York, NY 10036, USA.
| | | |
Collapse
|
24
|
Richter HO, Andersson J, Schneider H, Långström B. Neuroanatomical correlates of voluntary inhibition of accommodation/vergence under monocular open-loop viewing conditions. Eur J Neurosci 2005; 21:3077-88. [PMID: 15978017 DOI: 10.1111/j.1460-9568.2005.04140.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work is to identify human neural circuits involved in inhibition of accommodation/vergence by contrasting the cortical functions subservient to negative voluntary accommodation/vergence (NVA) with those evoked by active fixation in darkness (FIX). Five subjects with normal corrected acuity were studied using positron emission tomography and the HO bolus technique. The dominant right eye viewed a laser speckle pattern (633 nm) whose direction and velocity of motion were determined by the refractive state of the eye. The speckle pattern was presented at a distance of 1.8 m (0.55 D). The non-dominant eye was patched. Subjects performed two tasks counterbalanced for order effects: (i) attempted fixation on the remembered target in darkness with the dominant eye open and 'fixating'; and (ii) voluntary reduction of the laser speckle flow during each alternate 20-s epoch when a convex +2.0 D lens was placed in front of the right eye causing the speckle pattern to move downwards at 3 degrees /s. Comparison of the condition of NVA with the condition of FIX indicated widespread occipital activation. Decreases in absolute regional cerebral blood flow occurred in the superior parietal cortex (BA 5), frontal cortex (BA 8 and 10) and within the postcentral/precentral gyrus (BA 1/2/3/4) bilaterally where deactivation clusters eclipsed the presumed neck and shoulder areas. Negative accommodation/vergence appears to be driven by a reduction of parasympathetic tone, and has the effect of shutting down brain regions known to be involved in regulating visual search as well as a centrally controlled eye-head-neck-shoulder motor programme responsible for posturing gaze.
Collapse
Affiliation(s)
- H O Richter
- Department of Education and Psychology, University of Gävle, SE-801 76 Gävle, Sweden.
| | | | | | | |
Collapse
|
25
|
Richter HO, Costello P, Sponheim SR, Lee JT, Pardo JV. Functional neuroanatomy of the human near/far response to blur cues: eye-lens accommodation/vergence to point targets varying in depth. Eur J Neurosci 2005; 20:2722-32. [PMID: 15548215 DOI: 10.1111/j.1460-9568.2004.03743.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to identify the networks involved in the regulation of visual accommodation/vergence by contrasting the cortical functions subservient to eye-lens accommodation with those evoked by foveal fixation. Neural activity was assessed in normal volunteers by changes in rCBF measured with PET. Thirteen right-handed subjects participated in three monocular tasks: (i) resting with eyes closed; (ii) sustained foveal fixation upon a LED at 1.2 m (0.83 D); and (iii) accommodating alternately on a near (24 cm, 4.16 D) vs. a far (3.0 m, 0.33 D) LED alternately illuminated in sequential 2 s epochs. The contrast between the conditions of near/far accommodation and of constant foveal fixation revealed activation in cerebellar hemispheres and vermis; middle and inferior temporal cortex (BA 20, 21, 37); striate cortex and associative visual areas (BA 17/18). Comparison of the condition of constant fixation with the condition of resting with closed eyes indicated activation of cerebellar hemispheres and vermis; visual cortices (BA 17/18); a right hemisphere dominant network encompassing prefrontal (BA 6, 9, 47), superior parietal (BA 7), and superior temporal (BA 40) cortices; and bilateral thalamus. The contrast between the conditions of near/far accommodation with closed-eye rest reflected an incremental summation of the activations found in the previous comparisons (i.e. activations associated with constant fixation). Neural circuits activated selectively during the near/far response to blur cues over those during constant visual fixation, occupy posterior structures that include occipital visual regions, cerebellar hemispheres and vermis, and temporal cortex.
Collapse
Affiliation(s)
- Hans O Richter
- Department of Ophthalmology, Karolinska Institute, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
26
|
Kruger PB, Rucker FJ, Hu C, Rutman H, Schmidt NW, Roditis V. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration. Vision Res 2004; 45:1265-74. [PMID: 15733959 DOI: 10.1016/j.visres.2004.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 11/28/2022]
Abstract
Accommodation was monitored while observers (23) viewed a square-wave grating (2.2 cycles/deg; 0.53 contrast) in a Badal optometer. The grating moved sinusoidally (0.2 Hz) to provide a stimulus between -1.00 D and -3.00 D during trials lasting 40.96 s. There were three illumination conditions: 1. Monochromatic 550 nm light to stimulate long-wavelength-sensitive cones (L-cones) and medium-wavelength-sensitive cones (M-cones) without chromatic aberration; 2. Monochromatic 550 nm light+420 nm light to stimulate long-, medium- and short-wavelength-sensitive cones (S-cones) with longitudinal chromatic aberration (LCA); 3. Monochromatic 550 nm light+420 nm light to stimulate L-, M- and S-cones viewed through an achromatizing lens. In the presence of LCA mean dynamic gain decreased (p=0.0003; ANOVA) and mean accommodation level was reduced (p=0.001; ANOVA). The reduction in gain and increased lag of accommodation in the presence of LCA could result from a blue-yellow chromatic signal or from a larger depth-of-focus.
Collapse
Affiliation(s)
- Philip B Kruger
- Schnurmacher Institute for Vision Research, State College of Optometry, State University of New York, 33 West 42nd Street, New York, NY 10036, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Rucker FJ, Kruger PB. Accommodation responses to stimuli in cone contrast space. Vision Res 2004; 44:2931-44. [PMID: 15380997 DOI: 10.1016/j.visres.2004.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 11/06/2003] [Indexed: 10/26/2022]
Abstract
The aim was to identify the cone contributions and pathways for reflex accommodation. Twelve illumination conditions were used to test specified locations in cone-contrast space. Accommodation was monitored continuously in a Badal optometer while the grating stimulus (2.2 c/d sine-wave; 0.27 modulation) moved sinusoidally (0.195 Hz) towards and away from the eye from a mean position of 2.00 D (+/-1.00 D). Mean accommodation level and dynamic gain and phase at 0.195 Hz were calculated. Mean accommodation level varied significantly when the long- and middle-wavelength cone contrast ratio was altered in both the luminance and chromatic quadrants of cone-contrast space. This experiment indicates that L- and M-cones contribute to luminance and chromatic signals that produce the accommodation response, most likely through magno-cellular and parvo-cellular pathways, respectively. The L:M cone weighting to the luminance pathway that mediates accommodation is 1.63:1. The amplitude and direction of the response depends on changes in chromatic contrast and luminance contrast signals that result from longitudinal chromatic aberration and defocus of the image.
Collapse
Affiliation(s)
- Frances J Rucker
- Schnurmacher Institute for Vision Research, State University of New York, State College of Optometry, 33 West 42nd Street, NY 10036-8003, USA.
| | | |
Collapse
|