1
|
Yang E, Zwart MF, James B, Rubinov M, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB. A brainstem integrator for self-location memory and positional homeostasis in zebrafish. Cell 2022; 185:5011-5027.e20. [PMID: 36563666 DOI: 10.1016/j.cell.2022.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.
Collapse
Affiliation(s)
- En Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; School of Psychology and Neuroscience, Centre for Biophotonics, University of St Andrews, St. Andrews, UK
| | - Ben James
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mikail Rubinov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nikita Vladimirov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
2
|
Magnasco MO. Robustness and Flexibility of Neural Function through Dynamical Criticality. ENTROPY (BASEL, SWITZERLAND) 2022; 24:591. [PMID: 35626476 PMCID: PMC9141846 DOI: 10.3390/e24050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
In theoretical biology, robustness refers to the ability of a biological system to function properly even under perturbation of basic parameters (e.g., temperature or pH), which in mathematical models is reflected in not needing to fine-tune basic parameter constants; flexibility refers to the ability of a system to switch functions or behaviors easily and effortlessly. While there are extensive explorations of the concept of robustness and what it requires mathematically, understanding flexibility has proven more elusive, as well as also elucidating the apparent opposition between what is required mathematically for models to implement either. In this paper we address a number of arguments in theoretical neuroscience showing that both robustness and flexibility can be attained by systems that poise themselves at the onset of a large number of dynamical bifurcations, or dynamical criticality, and how such poising can have a profound influence on integration of information processing and function. Finally, we examine critical map lattices, which are coupled map lattices where the coupling is dynamically critical in the sense of having purely imaginary eigenvalues. We show that these map lattices provide an explicit connection between dynamical criticality in the sense we have used and "edge of chaos" criticality.
Collapse
Affiliation(s)
- Marcelo O Magnasco
- Laboratory of Integrative Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
3
|
Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. J Neurosci 2019; 40:143-158. [PMID: 31685652 DOI: 10.1523/jneurosci.1783-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENT Dscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.
Collapse
|
4
|
Matsumoto A, Tachibana M. Global Jitter Motion of the Retinal Image Dynamically Alters the Receptive Field Properties of Retinal Ganglion Cells. Front Neurosci 2019; 13:979. [PMID: 31572123 PMCID: PMC6753181 DOI: 10.3389/fnins.2019.00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/30/2019] [Indexed: 11/25/2022] Open
Abstract
Fixational eye movements induce aperiodic motion of the retinal image. However, it is not yet fully understood how fixational eye movements affect retinal information processing. Here we show that global jitter motion, simulating the image motion during fixation, alters the spatiotemporal receptive field properties of retinal ganglion cells. Using multi-electrode and whole-cell recording techniques, we investigated light-evoked responses from ganglion cells in the isolated goldfish retina. Ganglion cells were classified into six groups based on the filtering property of light stimulus, the membrane properties, and the cell morphology. The spatiotemporal receptive field profiles of retinal ganglion cells were estimated by the reverse correlation method, where the dense noise stimulus was applied on the dark or random-dot background. We found that the jitter motion of the random-dot background elongated the receptive filed along the rostral-caudal axis and temporally sensitized in a specific group of ganglion cells: Fast-transient ganglion cells. At the newly emerged regions of the receptive field local light stimulation evoked excitatory postsynaptic currents with large amplitude and fast kinetics without changing the properties of inhibitory postsynaptic currents. Pharmacological experiments suggested two presynaptic mechanisms underlying the receptive field alteration: (i) electrical coupling between bipolar cells, which expands the receptive field in all directions; (ii) GABAergic presynaptic inhibition from amacrine cells, which reduces the dorsal and ventral regions of the expanded receptive field, resulting in elongation along the rostral-caudal axis. Our study demonstrates that the receptive field of Fast-transient ganglion cells is not static but dynamically altered depending on the visual inputs. The receptive field elongation during fixational eye movements may contribute to prompt firing to a target in the succeeding saccade.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Kusatsu, Japan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Masao Tachibana
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
5
|
Northmore DPM. Holding visual attention for 400millionyears: A model of tectum and torus longitudinalis in teleost fishes. Vision Res 2017; 131:44-56. [PMID: 28025052 DOI: 10.1016/j.visres.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/20/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Abstract
Only ray-finned fishes possess a torus longitudinalis (TL), a paired, elongated body attached to the medial margins of the optic tectum. Its granule cells project large numbers of fine fibers running laterally over adjacent tectum, synapsing excitatorily on the spiny dendrites of pyramidal cells. Sustained TL activity is evoked visuotopically by dark stimuli; TL bursting is a corollary discharge of saccadic eye movements. To suggest a function for this ancient structure, neural network models were constructed to show that: (1) pyramidal cells could form an attentional locus, selecting one out of several moving objects to track, but rapid image shifts caused by saccades disrupt tracking; (2) TL could supply both the pre-saccade position of a locus, and the shift predicted from a saccade so as to prime pyramidal dendrites at the target location, ensuring the locus stays with the attended object; (3) that the specific pattern of synaptic connections required for such predictive priming could be learned by an unsupervised rule; (4) temporal and spatial filtering of visual pattern input to TL allows learning from a complex scene. The principles thus evinced could apply to trans-saccadic attention and visual stability in other species.
Collapse
Affiliation(s)
- David P M Northmore
- Dept. of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
6
|
MATSUMOTO A, TACHIBANA M. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:234-249. [PMID: 28413199 PMCID: PMC5489431 DOI: 10.2183/pjab.93.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/14/2016] [Indexed: 06/07/2023]
Abstract
Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.
Collapse
Affiliation(s)
- Akihiro MATSUMOTO
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | - Masao TACHIBANA
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Center for Systems Vision Science, Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
7
|
Yang X, Ding H, Lu J. Feedback from visual cortical area 7 to areas 17 and 18 in cats: How neural web is woven during feedback. Neuroscience 2015; 312:190-200. [PMID: 26592718 DOI: 10.1016/j.neuroscience.2015.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/10/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022]
Abstract
To investigate the feedback effect from area 7 to areas 17 and 18, intrinsic signal optical imaging combined with pharmacological, morphological methods and functional magnetic resonance imaging (fMRI) was employed. A spatial frequency-dependent decrease in response amplitude of orientation maps was observed in areas 17 and 18 when area 7 was inactivated by a local injection of GABA, or by a lesion induced by liquid nitrogen freezing. The pattern of orientation maps of areas 17 and 18 after the inactivation of area 7, if they were not totally blurred, paralleled the normal one. In morphological experiments, after one point at the shallow layers within the center of the cat's orientation column of area 17 was injected electrophoretically with HRP (horseradish peroxidase), three sequential patches in layers 1, 2 and 3 of area 7 were observed. Employing fMRI it was found that area 7 feedbacks mainly to areas 17 and 18 on ipsilateral hemisphere. Therefore, our conclusions are: (1) feedback from area 7 to areas 17 and 18 is spatial frequency modulated; (2) feedback from area 7 to areas 17 and 18 occurs mainly ipsilaterally; (3) histological feedback pattern from area 7 to area 17 is weblike.
Collapse
Affiliation(s)
- X Yang
- Life Science School, Fudan University, Shanghai 200433, China; Center of Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | - H Ding
- Huaiyin Normal University, Huaian 223300, China
| | - J Lu
- The Advanced Institute of Translational Medicine and School of Software Engineering, Tongji University, Shanghai 200073, China.
| |
Collapse
|
8
|
Mandecki JL, Domenici P. Eye movements are coordinated with pectoral fin beats during locomotion in a marine teleost fish. J Exp Biol 2015; 218:1122-5. [DOI: 10.1242/jeb.116756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/15/2015] [Indexed: 11/20/2022]
Abstract
Animals must simultaneously engage multiple functional systems in order to navigate, feed, and survive in complex environments. Nearly all vertebrates perform rapid gaze-shifting eye movements called saccades, but we know little about the behaviour of saccades during rhythmic locomotion. This study examines how saccades are coordinated with locomotor movements in a pectoral-fin-propelled teleost fish, Cymatogaster aggregata, the shiner surfperch. Twelve individuals were filmed swimming in a flow tank at 10 cm s−1, and timing data were analyzed using circular statistics. Results reveal that Cymatogaster generates saccades non-uniformly throughout the pectoral fin cycle. Saccades primarily occur during fin abduction, when a large amount of thrust is produced, and rarely occur during the thrust-free refractory phase. Because vision is known to be impaired during saccades, we hypothesize that Cymatogaster synchronizes saccades with periods of high acceleration in order to stabilize retinal images during low-acceleration phases, which are nearly saccade-free.
Collapse
Affiliation(s)
- Joanna L. Mandecki
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Paolo Domenici
- CNR-IAMC, c/o International Marine Centre, Loc. Sa Mardini, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
9
|
Development of oculomotor circuitry independent of hox3 genes. Nat Commun 2014; 5:4221. [PMID: 24964400 DOI: 10.1038/ncomms5221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/27/2014] [Indexed: 01/05/2023] Open
Abstract
Hox genes have been shown to be essential in vertebrate neural circuit formation and their depletion has resulted in homeotic transformations with neuron loss and miswiring. Here we quantifiy four eye movements in the zebrafish mutant valentino and hox3 knockdowns, and find that contrary to the classical model, oculomotor circuits in hindbrain rhombomeres 5-6 develop and function independently of hox3 genes. All subgroups of oculomotor neurons are present, as well as their input and output connections. Ectopic connections are also established, targeting two specific subsets of horizontal neurons, and the resultant novel eye movements coexists with baseline behaviours. We conclude that the high expression of hox3 genes in rhombomeres 5-6 serves to prevent aberrant neuronal identity and behaviours, but does not appear to be necessary for a comprehensive assembly of functional oculomotor circuits.
Collapse
|
10
|
Gonçalves PJ, Arrenberg AB, Hablitzel B, Baier H, Machens CK. Optogenetic perturbations reveal the dynamics of an oculomotor integrator. Front Neural Circuits 2014; 8:10. [PMID: 24616666 PMCID: PMC3937552 DOI: 10.3389/fncir.2014.00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI) for which the so-called “line attractor” network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax toward the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state—the null position of the eyes—which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity.
Collapse
Affiliation(s)
- Pedro J Gonçalves
- Group for Neural Theory, Departement d'Etudes Cognitives, INSERM U960, École Normale Supérieure Paris, France ; Champalimaud Neuroscience Program, Centro Champalimaud - Champalimaud Centre for the Unknown Lisbon, Portugal ; Gatsby Computational Neuroscience Unit, University College London London, UK
| | - Aristides B Arrenberg
- Neuroscience Program, Department of Physiology, University of California San Francisco San Francisco, CA, USA ; Faculty of Biology, Center for Biological Signaling Studies, University of Freiburg Freiburg, Germany
| | - Bastian Hablitzel
- Faculty of Biology, Center for Biological Signaling Studies, University of Freiburg Freiburg, Germany
| | - Herwig Baier
- Neuroscience Program, Department of Physiology, University of California San Francisco San Francisco, CA, USA ; Max Planck Institute of Neurobiology Martinsried, Germany
| | - Christian K Machens
- Group for Neural Theory, Departement d'Etudes Cognitives, INSERM U960, École Normale Supérieure Paris, France ; Champalimaud Neuroscience Program, Centro Champalimaud - Champalimaud Centre for the Unknown Lisbon, Portugal
| |
Collapse
|
11
|
Wilkinson NM, Metta G. Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements. Front Syst Neurosci 2014; 8:29. [PMID: 24616670 PMCID: PMC3935396 DOI: 10.3389/fnsys.2014.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/09/2014] [Indexed: 11/13/2022] Open
Abstract
Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modeled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of oculomotor postural control. We identify signatures reminiscent of a certain flavor of transient neurodynamics; toric traveling waves which rotate around a central phase singularity. Spiral waves play an organizational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales.
Collapse
Affiliation(s)
| | - Giorgio Metta
- iCub Facility, Fondazione Istituto Italiano di TecnologiaGenova, Italy
- Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of PlymouthPlymouth, UK
| |
Collapse
|
12
|
Khojasteh E, Bockisch CJ, Straumann D, Hegemann SCA. A re-examination of the time constant of the oculomotor neural integrator in human. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:4780-3. [PMID: 23366997 DOI: 10.1109/embc.2012.6347036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the horizontal oculomotor neural integrator in healthy human subjects during gaze holding in darkness. We found large variability among subjects with respect to the estimated time constants and the integrator's null position. We also found that individual subjects could demonstrate significantly nonlinear drift velocities as a function of eye position. Nevertheless, a consistent trend did not emerge. Consequently, cross subject averaging eliminates idiosyncratic nonlinear patterns and the average can be approximated by a linear function inside the range that was tested.
Collapse
Affiliation(s)
- Elham Khojasteh
- Oculomotor Laboratory, University Hospital Zürich, CH-8091 Zürich, Switzerland.
| | | | | | | |
Collapse
|
13
|
Bockisch CJ, Khojasteh E, Straumann D, Hegemann SCA. Development of eye position dependency of slow phase velocity during caloric stimulation. PLoS One 2012; 7:e51409. [PMID: 23251522 PMCID: PMC3520909 DOI: 10.1371/journal.pone.0051409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/02/2012] [Indexed: 11/25/2022] Open
Abstract
The nystagmus in patients with vestibular disorders often has an eye position dependency, called Alexander’s law, where the slow phase velocity is higher with gaze in the fast phase direction compared with gaze in the slow phase direction. Alexander’s law has been hypothesized to arise either due to adaptive changes in the velocity-to-position neural integrator, or as a consequence of processing of the vestibular-ocular reflex. We tested whether Alexander’s law arises only as a consequence of non-physiologic vestibular stimulation. We measured the time course of the development of Alexander’s law in healthy humans with nystagmus caused by three types of caloric vestibular stimulation: cold (unilateral inhibition), warm (unilateral excitation), and simultaneous bilateral bithermal (one side cold, the other warm) stimulation, mimicking the normal push-pull pattern of vestibular stimulation. Alexander’s law, measured as a negative slope of the velocity versus position curve, was observed in all conditions. A reversed pattern of eye position dependency (positive slope) was found <10% of the time. The slope often changed with nystagmus velocity (cross-correlation of nystagmus speed and slope was significant in 50% of cases), and the average lag of the slope with the speed was not significantly different from zero. Our results do not support the hypothesis that Alexander’s law can only be observed with non-physiologic vestibular stimulation. Further, the rapid development of Alexander’s law, while possible for an adaptive mechanism, is nonetheless quite fast compared to most other ocular motor adaptations. These results suggest that Alexander’s law may not be a consequence of a true adaptive mechanism.
Collapse
Affiliation(s)
- Christopher J Bockisch
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
14
|
Hyde RA, Strowbridge BW. Mnemonic representations of transient stimuli and temporal sequences in the rodent hippocampus in vitro. Nat Neurosci 2012; 15:1430-8. [PMID: 22960934 PMCID: PMC3614351 DOI: 10.1038/nn.3208] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/06/2012] [Indexed: 11/23/2022]
Abstract
A primary function of the brain is to store and retrieve information. Except for working memory, where extracellular recordings demonstrate persistent discharges during delay-response tasks, it has been difficult to link memories with changes in individual neurons or specific synaptic connections. Here, we demonstrate that transient stimuli are reliably encoded in the ongoing activity of brain tissue in vitro. We found that the patterns of synaptic input onto dentate hilar neurons predict which of four pathways were stimulated with an accuracy of 76% and performed significantly better than chance for >15 s. Dentate gyrus neurons also could accurately encode temporal sequences using population representations that were robust to variation in sequence interval. These results demonstrate direct neural encoding of temporal sequences in the spontaneous activity of brain tissue and suggest a novel local circuit mechanism that may contribute to diverse forms of short-term memory.
Collapse
Affiliation(s)
- Robert A Hyde
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
15
|
Bourjaily MA, Miller P. Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations. J Neurophysiol 2012; 108:513-27. [PMID: 22457467 DOI: 10.1152/jn.00806.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animals must often make opposing responses to similar complex stimuli. Multiple sensory inputs from such stimuli combine to produce stimulus-specific patterns of neural activity. It is the differences between these activity patterns, even when small, that provide the basis for any differences in behavioral response. In the present study, we investigate three tasks with differing degrees of overlap in the inputs, each with just two response possibilities. We simulate behavioral output via winner-takes-all activity in one of two pools of neurons forming a biologically based decision-making layer. The decision-making layer receives inputs either in a direct stimulus-dependent manner or via an intervening recurrent network of neurons that form the associative layer, whose activity helps distinguish the stimuli of each task. We show that synaptic facilitation of synapses to the decision-making layer improves performance in these tasks, robustly increasing accuracy and speed of responses across multiple configurations of network inputs. Conversely, we find that synaptic depression worsens performance. In a linearly nonseparable task with exclusive-or logic, the benefit of synaptic facilitation lies in its superlinear transmission: effective synaptic strength increases with presynaptic firing rate, which enhances the already present superlinearity of presynaptic firing rate as a function of stimulus-dependent input. In linearly separable single-stimulus discrimination tasks, we find that facilitating synapses are always beneficial because synaptic facilitation always enhances any differences between inputs. Thus we predict that for optimal decision-making accuracy and speed, synapses from sensory or associative areas to decision-making or premotor areas should be facilitating.
Collapse
Affiliation(s)
- Mark A Bourjaily
- Neuroscience Program, Brandeis University, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
16
|
Abstract
A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems.
Collapse
|
17
|
Maurer CM, Huang YY, Neuhauss SCF. Application of zebrafish oculomotor behavior to model human disorders. Rev Neurosci 2011; 22:5-16. [PMID: 21615257 DOI: 10.1515/rns.2011.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To ensure high acuity vision, eye movements have to be controlled with astonishing precision by the oculomotor system. Many human diseases can lead to abnormal eye movements, typically of the involuntary oscillatory eye movements type called nystagmus. Such nystagmus can be congenital (infantile) or acquired later in life. Although the resulting eye movements are well characterized, there is only little information about the underlying etiology. This is in part owing to the lack of appropriate animal models. In this review article, we describe how the zebrafish with its quick maturing visual system can be used to model oculomotor pathologies. We compare the characteristics and assessment of human and zebrafish eye movements. We describe the oculomotor properties of the zebrafish mutant belladonna, which has non-crossing optical fibers, and is a particularly informative model for human oculomotor deficits. This mutant displays a reverse optokinetic response, spontaneous oscillations that closely mimic human congenital nystagmus and abnormal motor behavior linked to circular vection.
Collapse
Affiliation(s)
- Colette M Maurer
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Luque MA, Torres-Torrelo J, Carrascal L, Torres B, Herrero L. GABAergic Projections to the Oculomotor Nucleus in the Goldfish (carassius Auratus). Front Neuroanat 2011; 5:7. [PMID: 21331170 PMCID: PMC3034998 DOI: 10.3389/fnana.2011.00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/23/2011] [Indexed: 11/29/2022] Open
Abstract
The mammalian oculomotor nucleus receives a strong γ-aminobutyric acid (GABA)ergic synaptic input, whereas such projections have rarely been reported in fish. In order to determine whether this synaptic organization is preserved across vertebrates, we investigated the GABAergic projections to the oculomotor nucleus in the goldfish by combining retrograde transport of biotin dextran amine, injected into the antidromically identified oculomotor nucleus, and GABA immunohistochemistry. The main source of GABAergic afferents to the oculomotor nucleus was the ipsilateral anterior octaval nucleus, with only a few, if any, GABAergic neurons being located in the contralateral tangential and descending nuclei of the octaval column. In mammals there is a nearly GABAergic inhibitory inputs; thus, the vestibulooculomotor GABAergic circuitry follows a plan that appears to be shared throughout the vertebrate phylogeny. The second major source of GABAergic projections was the rhombencephalic reticular formation, primarily from the medial area but, to a lesser extent, from the inferior area. A few GABAergic oculomotor projecting neurons were also observed in the ipsilateral nucleus of the medial longitudinal fasciculus. The GABAergic projections from neurons located in both the reticular formation surrounding the abducens nucleus and the nucleus of the medial reticular formation have primarily been related to the control of saccadic eye movements. Finally, all retrogradely labeled internuclear neurons of the abducens nucleus, and neurons in the cerebellum (close to the caudal lobe), were negative for GABA. These data suggest that the vestibuloocular and saccadic inhibitory GABAergic systems appear early in vertebrate phylogeny to modulate the firing properties of the oculomotor nucleus motoneurons.
Collapse
Affiliation(s)
- M. Angeles Luque
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | | | - Livia Carrascal
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | - Blas Torres
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| | - Luis Herrero
- Department of Physiology and Zoology, University of SevilleSeville, Spain
| |
Collapse
|
19
|
Debowy O, Baker R. Encoding of eye position in the goldfish horizontal oculomotor neural integrator. J Neurophysiol 2010; 105:896-909. [PMID: 21160010 DOI: 10.1152/jn.00313.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monocular organization of the goldfish horizontal neural integrator was studied during spontaneous scanning saccadic and fixation behaviors. Analysis of neuronal firing rates revealed a population of ipsilateral (37%), conjugate (59%), and contralateral (4%) eye position neurons. When monocular optokinetic stimuli were employed to maximize disjunctive horizontal eye movements, the sampled population changed to 57, 39, and 4%. Monocular eye tracking could be elicited at different gain and phase with the integrator time constant independently modified for each eye by either centripetal (leak) or centrifugal (instability) drifting visual stimuli. Acute midline separation between the hindbrain oculomotor integrators did not affect either monocularity or time constant tuning, corroborating that left and right eye positions are independently encoded within each integrator. Together these findings suggest that the "ipsilateral" and "conjugate/contralateral" integrator neurons primarily target abducens motoneurons and internuclear neurons, respectively. The commissural pathway is proposed to select the conjugate/contralateral eye position neurons and act as a feedforward inhibition affecting null eye position, oculomotor range, and saccade pattern.
Collapse
Affiliation(s)
- Owen Debowy
- Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Ave, New York, NY 10065, USA
| | | |
Collapse
|
20
|
Chan W, Galiana HL. A nonlinear model of the neural integrator improves detection of deficits in the human VOR. IEEE Trans Biomed Eng 2009; 57:1012-23. [PMID: 19272974 DOI: 10.1109/tbme.2009.2016112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A nonlinear model has been proposed to describe the set-point-dependent characteristics of the neural integrator (NI) in the oculomotor system. It was shown to yield improved prediction of slow-phase eye position in the vestibulo-ocular reflex (VOR) of normal subjects, when compared to the classical linear model of the NI. In this paper, we compare the parameters of this nonlinear NI model fitted to VOR data from: 1) compensated subjects diagnosed with vestibular deficiencies such as vestibular neuronitis and Meniere's disease and 2) normal (symptom-free) subjects. The identified models exhibit more severe nonlinearity in VOR patients than the normal controls. Several of the identified parameters in patients unmask asymmetries and more context dependence in the NI and in the VOR gain that are consistent with the lesioned side and could serve to support detection of lesions even after compensation.
Collapse
Affiliation(s)
- Wilbur Chan
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
21
|
Hogie M, Guerbet M, Reber A. The toxic effects of toluene on the optokinetic nystagmus in pigmented rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:872-878. [PMID: 18397809 DOI: 10.1016/j.ecoenv.2008.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 02/18/2008] [Accepted: 02/24/2008] [Indexed: 05/26/2023]
Abstract
The effects of 375 mgm(-3) (100 ppm) toluene in air inhalation were evaluated on pigmented rats during either repeated exposures over five consecutive days 3h a day or during a single 4-h exposure. At the end of the inhalation period, the animals were returned to fresh air to evaluate their ability to recover optokinetic performance. The optokinetic responses were analyzed using a magnetic search coil technique previously described. After repeated toluene exposure, the eye position at rest of all the rats was unsteady. In response to visual stimulation, the eye velocity was slower and more irregular than in the control state. At the end of the stimulation, the environment of the animals became stationary, but the eye did not immediately return to a fixed stable position. A similar effect was observed after a single exposure. An increase of the optokinetic deficit was observed after single or repeated 375 mgm(-3) toluene exposures. No recovery was observed even after a single exposure. In view of the fact that toluene is a widely used solvent, these results show that inhalation of low concentrations, even for short single exposures, must be taken into account, because gaze destabilization could cause vertigo symptoms.
Collapse
Affiliation(s)
- Manuela Hogie
- Faculty of Sciences, Laboratory of Neurosciences and Environment, Rouen University, 76821 Mont Saint Aignan Cedex, France
| | | | | |
Collapse
|
22
|
Bockisch CJ, Hegemann S. Alexander's law and the oculomotor neural integrator: three-dimensional eye velocity in patients with an acute vestibular asymmetry. J Neurophysiol 2008; 100:3105-16. [PMID: 18799600 DOI: 10.1152/jn.90381.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
According to Alexander's law (AL), the slow phase velocity of nystagmus of vestibular origin is dependent on horizontal position, with lower velocity when gaze is directed in the slow compared with the fast phase direction. Adaptive changes in the velocity-to-position neural integrator are thought to cause AL. Although these changes have been described for the horizontal neural integrator, nystagmus often includes vertical and torsional components, but the adaptive abilities of the vertical and torsional integrators have not been investigated. We measured 11 patients with a peripheral vestibular asymmetry and used second-order equations to describe how velocity varied with position. Horizontal velocity changed with horizontal position in accordance with AL and the second-order term for horizontal position was also significant. Whereas velocity decreased in the slow phase direction, it was relatively unchanged >10 degrees into the fast phase direction. Vertical velocity was also highest in the vertical fast phase direction and the second-order term for vertical position was also significant, in that vertical velocity increased in the vertical fast phase direction, but was unchanging in the slow phase direction. Torsional velocity varied linearly with horizontal, but not vertical, position. These results show that the horizontal and vertical oculomotor neural integrators react to altered vestibular input by maintaining different integrating time constants depending on gaze direction.
Collapse
Affiliation(s)
- Christopher J Bockisch
- Department of Otorhinolaryngology, Head and Neck Surgery, Zürich University Hospital, Zurich, Switzerland.
| | | |
Collapse
|
23
|
Segev R, Schneidman E, Goodhouse J, Berry MJ. Role of eye movements in the retinal code for a size discrimination task. J Neurophysiol 2007; 98:1380-91. [PMID: 17625063 DOI: 10.1152/jn.00395.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concerted action of saccades and fixational eye movements are crucial for seeing stationary objects in the visual world. We studied how these eye movements contribute to retinal coding of visual information using the archer fish as a model system. We quantified the animal's ability to distinguish among objects of different sizes and measured its eye movements. We recorded from populations of retinal ganglion cells with a multielectrode array, while presenting visual stimuli matched to the behavioral task. We found that the beginning of fixation, namely the time immediately after the saccade, provided the most visual information about object size, with fixational eye movements, which consist of tremor and drift in the archer fish, yielding only a minor contribution. A simple decoder that combined information from <or=15 ganglion cells could account for the behavior. Our results support the view that saccades impose not just difficulties for the visual system, but also an opportunity for the retina to encode high quality "snapshots" of the environment.
Collapse
Affiliation(s)
- Ronen Segev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
24
|
Joshi P. From memory-based decisions to decision-based movements: a model of interval discrimination followed by action selection. Neural Netw 2007; 20:298-311. [PMID: 17556113 DOI: 10.1016/j.neunet.2007.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interval discrimination task is a classical experimental paradigm that is employed to study working memory and decision making and typically involves four phases. First, the subject receives a stimulus, then holds it in the working memory, then makes a decision by comparing it with another stimulus and finally acts on this decision, usually by pressing one of the two buttons corresponding to the binary decision. This article demonstrates that simple linear readouts from generic neural microcircuits that send feedback of their activity to the circuit, can be trained using identical learning mechanisms to perform quite separate tasks of decision making and generation of subsequent motor commands. In this sense, the neurocomputational algorithm presented here is able to integrate the four computational stages into a single unified framework. The algorithm is tested using two-interval discrimination and delayed-match-to-sample experimental paradigms as benchmarks.
Collapse
Affiliation(s)
- Prashant Joshi
- Institute for Theoretical Computer Science, Technische Universität Graz, Inffeldgasse, 16-b/I, A-8010 Graz, Austria.
| |
Collapse
|
25
|
Idoux E, Serafin M, Fort P, Vidal PP, Beraneck M, Vibert N, Mühlethaler M, Moore LE. Oscillatory and Intrinsic Membrane Properties of Guinea Pig Nucleus Prepositus Hypoglossi Neurons In Vitro. J Neurophysiol 2006; 96:175-96. [PMID: 16598060 DOI: 10.1152/jn.01355.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous models of the oculomotor neuronal integrator located in the prepositus hypoglossi nucleus (PHN) involve both highly tuned recurrent networks and intrinsic neuronal properties; however, there is little experimental evidence for the relative role of these two mechanisms. The experiments reported here show that all PHN neurons (PHNn) show marked phasic behavior, which is highly oscillatory in ∼25% of the population. The behavior of this subset of PHNn, referred to as type D PHNn, is clearly different from that of the medial vestibular nucleus neurons, which transmit the bulk of head velocity-related sensory vestibular inputs without integrating them. We have investigated the firing and biophysical properties of PHNn and developed data-based realistic neuronal models to quantitatively illustrate that their active conductances can produce the oscillatory behavior. Although some individual type D PHNn are able to show some features of mathematical integration, the lack of robustness of this behavior strongly suggests that additional network interactions, likely involving all types of PHNn, are essential for the neuronal integrator. Furthermore, the relationship between the impulse activity and membrane potential of type D PHNn is highly nonlinear and frequency-dependent, even for relatively small-amplitude responses. These results suggest that some of the synaptic input to type D PHNn is likely to evoke oscillatory responses that will be nonlinearly amplified as the spike discharge rate increases. It would appear that the PHNn have specific intrinsic properties that, in conjunction with network interconnections, enhance the persistent neural activity needed for their function.
Collapse
Affiliation(s)
- Erwin Idoux
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique (CNRS)-Université René Descartes (Paris 5) Unité Mixte de Recherche (UMR) 7060, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Luque MA, Pérez-Pérez MP, Herrero L, Waitzman DM, Torres B. Eye movements evoked by electrical microstimulation of the mesencephalic reticular formation in goldfish. Neuroscience 2006; 137:1051-73. [PMID: 16298075 DOI: 10.1016/j.neuroscience.2005.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/06/2005] [Accepted: 09/24/2005] [Indexed: 11/18/2022]
Abstract
Anatomical studies in goldfish show that the tectofugal axons provide a large number of boutons within the mesencephalic reticular formation. Electrical stimulation, reversible inactivation and cell recording in the primate central mesencephalic reticular formation have suggested that it participates in the control of rapid eye movements (saccades). Moreover, the role of this tecto-recipient area in the generation of saccadic eye movements in fish is unknown. In this study we show that the electrical microstimulation of the mesencephalic reticular formation of goldfish evoked short latency saccadic eye movements in any direction (contraversive or ipsiversive, upward or downward). Movements of the eyes were usually disjunctive. Based on the location of the sites from which eye movements were evoked and the preferred saccade direction, eye movements were divided into different groups: pure vertical saccades were mainly elicited from the rostral mesencephalic reticular formation, while oblique and pure horizontal were largely evoked from middle and caudal mesencephalic reticular formation zones. The direction and amplitude of pure vertical and horizontal saccades were unaffected by initial eye position. However the amplitude, but not the direction of most oblique saccades was systematically modified by initial eye position. At the same time, the amplitude of elicited saccades did not vary in any consistent manner along either the anteroposterior, dorsoventral or mediolateral axes (i.e. there was no topographic organization of the mesencephalic reticular formation with respect to amplitude). In addition to these groups of movements, we found convergent and goal-directed saccades evoked primarily from the anterior and posterior mesencephalic reticular formation, respectively. Finally, the metric and kinetic characteristics of saccades could be manipulated by changes in the stimulation parameters. We conclude that the mesencephalic reticular formation in goldfish shares physiological functions that correspond closely with those found in mammals.
Collapse
Affiliation(s)
- M A Luque
- Department of Physiology and Zoology, Fac. Biología, University of Sevilla, Avda. Reina Mercedes, 6, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
27
|
Luque MA, Perez-Perez MP, Herrero L, Torres B. Connections of eye-saccade-related areas within mesencephalic reticular formation with the optic tectum in goldfish. J Comp Neurol 2006; 500:6-19. [PMID: 17099899 DOI: 10.1002/cne.21104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physiological studies demonstrate that separate sites within the mesencephalic reticular formation (MRF) can evoke eye saccades with different preferred directions. Furthermore, anatomical research suggests that a tectoreticulotectal circuit organized in accordance with the tectal eye movement map is present. However, whether the reticulotectal projection shifts with the gaze map present in the MRF is unknown. We explored this question in goldfish, by injecting biotin dextran amine within MRF sites that evoked upward, downward, oblique, and horizontal eye saccades. Then, we analyzed the labeling in the optic tectum. The main findings can be summarized as follows. 1) The MRF and the optic tectum were connected by separate axons of the tectobulbar tract. 2) The MRF was reciprocally connected mainly with the ipsilateral tectal lobe, but also with the contralateral one. 3) The MRF received projections chiefly from neurons located within intermediate and deep tectal layers. In addition, the MRF projections terminated primarily within the intermediate tectal layer. 4) The distribution of labeled neurons in the tectum shifted with the different MRF sites in a manner consistent with the tectal motor map. The area containing these cells was targeted by a high-density reticulotectal projection. In addition to this high-density topographic projection, there was a low-density one spread throughout the tectum. 5) Occasionally, boutons were observed adjacent to tectal labeled neurons. We conclude that the organization of the reticulotectal circuit is consistent with the functional topography of the MRF and that the MRF participates in a tectoreticulotectal feedback circuit.
Collapse
Affiliation(s)
- Maria A Luque
- Lab. Neurobiologia de Vertebrados, Dept. Fisiologia y Zoologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
28
|
Huk AC, Shadlen MN. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J Neurosci 2005; 25:10420-36. [PMID: 16280581 PMCID: PMC6725829 DOI: 10.1523/jneurosci.4684-04.2005] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 09/18/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022] Open
Abstract
Decision-making often requires the accumulation and maintenance of evidence over time. Although the neural signals underlying sensory processing have been studied extensively, little is known about how the brain accrues and holds these sensory signals to guide later actions. Previous work has suggested that neural activity in the lateral intraparietal area (LIP) of the monkey brain reflects the formation of perceptual decisions in a random dot direction-discrimination task in which monkeys communicate their decisions with eye-movement responses. We tested the hypothesis that decision-related neural activity in LIP represents the time integral of the momentary motion "evidence." By briefly perturbing the strength of the visual motion stimulus during the formation of perceptual decisions, we tested whether this LIP activity reflected a persistent, integrated "memory" of these brief sensory events. We found that the responses of LIP neurons reflected substantial temporal integration. Brief pulses had persistent effects on both the monkeys' choices and the responses of neurons in LIP, lasting up to 800 ms after appearance. These results demonstrate that LIP is involved in neural time integration underlying the accumulation of evidence in this task. Additional analyses suggest that decision-related LIP responses, as well as behavioral choices and reaction times, can be explained by near-perfect time integration that stops when a criterion amount of evidence has been accumulated. Temporal integration may be a fundamental computation underlying higher cognitive functions that are dissociated from immediate sensory inputs or motor outputs.
Collapse
Affiliation(s)
- Alexander C Huk
- Center for Perceptual Systems, Department of Psychology, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
29
|
Angeles Luque M, Pilar Pérez-Pérez M, Herrero L, Torres B. Involvement of the optic tectum and mesencephalic reticular formation in the generation of saccadic eye movements in goldfish. ACTA ACUST UNITED AC 2004; 49:388-97. [PMID: 16111565 DOI: 10.1016/j.brainresrev.2004.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/21/2004] [Accepted: 10/03/2004] [Indexed: 11/26/2022]
Abstract
The circuitry and physiological properties underlying saccadic eye movement generation have been studied mainly in monkeys and cats. By contrast, current knowledge in nonmammalian species is rather scarce. We review here some of our recent findings about the involvement of the optic tectum and mesencephalic reticular formation in the generation of saccades in goldfish. Electrical microstimulation of the optic tectum evokes contraversive saccadic eye movements. In goldfish, as in mammals, the amplitude and direction of saccades are encoded in a spatial topographical map. In addition, there are some areas that have evolved, such as the extreme anteromedial tectal zone, whose activation yields eye convergence. Injections of the bidirectional tracer biotin dextran amine within functionally identified sites of the tectum provide reciprocal, site-dependent connectivity with different downstream structures. Of these structures, the major tectofugal target is the mesencephalic reticular formation. In goldfish, as in mammals, the mesencephalic reticular formation and optic tectum establish reciprocal connections at regional and neuronal levels which support the presence of feedback circuits. Electrical microstimulation demonstrates that the mesencephalic reticular formation can be functionally parceled-the rostral part is linked to vertical saccades, while the caudal part is related with horizontal ones. Finally, these zones are also differently connected to the optic tectum. From these data, we conclude that the involvement of the optic tectum and mesencephalic reticular formation in eye movement generation in goldfish is similar to that reported in cats and monkeys.
Collapse
Affiliation(s)
- M Angeles Luque
- Lab. Neurobiología de Vertebrados, Dept. Fisiología y Zoología, Fac. Biologia, Avda. Reina Mercedes, 6, 41012, Univ Sevilla, Spain
| | | | | | | |
Collapse
|
30
|
Beck JC, Gilland E, Tank DW, Baker R. Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol 2004; 92:3546-61. [PMID: 15269231 DOI: 10.1152/jn.00311.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We quantitatively studied the ontogeny of oculomotor behavior in larval fish as a foundation for studies linking oculomotor structure and function with genetics. Horizontal optokinetic and vestibuloocular reflexes (OKR and VOR, respectively) were measured in three different species (goldfish, zebrafish, and medaka) during the first month after hatching. For all sizes of medaka, and most zebrafish, Bode plots of OKR (0.065-3.0 Hz, +/-10 degrees/s) revealed that eye velocity closely followed stimulus velocity (gain > 0.8) at low frequency but dropped sharply above 1 Hz (gain < 0.3 at 3 Hz). Goldfish showed increased gain proportional to size across frequencies. Linearity testing with steps and sinusoids showed excellent visual performance (gain > 0.8) in medaka almost from hatching; but zebrafish and goldfish exhibited progressive improvement, with only the largest equaling medaka performance. Monocular visual stimulation in zebrafish and goldfish produced gains of 0.5 versus <0.1 for the eye viewing a moving versus stationary stimulus pattern but 0.25 versus <0.1 in medaka. Angular VOR appeared much later than OKR, initially at only high accelerations (>200 degrees /s at 0.5 Hz), first in medaka followed by larger (8.11 mm) zebrafish; but it was virtually nonexistent in goldfish. Velocity storage was not observed except for an eye velocity build-up in the largest medaka. In summary, a robust OKR was achieved shortly after hatching in all three species. In contrast, larval fish seem to be unique among vertebrates tested in their lack of significant angular VOR at stages where active movement is required for feeding and survival.
Collapse
Affiliation(s)
- James C Beck
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
31
|
Major G, Baker R, Aksay E, Seung HS, Tank DW. Plasticity and tuning of the time course of analog persistent firing in a neural integrator. Proc Natl Acad Sci U S A 2004; 101:7745-50. [PMID: 15136747 PMCID: PMC419677 DOI: 10.1073/pnas.0401992101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a companion paper, we reported that the goldfish oculomotor neural integrator could be trained to instability or leak by rotating the visual surround with a velocity proportional to +/- horizontal eye position, respectively. Here we analyze changes in the firing rate behavior of neurons in area I in the caudal brainstem, a central component of the oculomotor neural integrator. Persistent firing could be detuned to instability and leak, respectively, along with fixation behavior. Prolonged training could reduce the time constant of persistent firing of some cells by more than an order of magnitude, to <1 s. Normal visual feedback gradually retuned persistent firing of integrator neurons toward stability, along with fixation behavior. In animals with unstable fixations, approximately half of the eye position-related cells had upward or unstable firing rate drift. In animals with leaky fixations, two-thirds of the eye position-related cells showed leaky firing drift. The remaining eye position-related cells, generally those with lower eye position thresholds, showed a more complex pattern of history-dependent/predictive firing rate drift in relation to eye drift. These complex drift cells often showed a drop in maximum persistent firing rate after training to leak. Despite this diversity, firing drift and the degree of instability or leak in firing rates were broadly correlated with fixation performance. The presence, strength, and reversibility of this plasticity demonstrate that, in this system, visual feedback plays a vital role in gradually tuning the time course of persistent neural firing.
Collapse
Affiliation(s)
- Guy Major
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
32
|
Major G, Baker R, Aksay E, Mensh B, Seung HS, Tank DW. Plasticity and tuning by visual feedback of the stability of a neural integrator. Proc Natl Acad Sci U S A 2004; 101:7739-44. [PMID: 15136746 PMCID: PMC419676 DOI: 10.1073/pnas.0401970101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Persistent neural firing is of fundamental importance to working memory and other brain functions because it allows information to be held "online" following an input and to be integrated over time. Many models of persistent activity rely on some kind of positive feedback internal to the neural circuit concerned; however, too much feedback causes runaway firing (instability), and too little results in loss of persistence (leak). This parameter sensitivity leads to the hypothesis that the brain uses an error signal (external feedback) to tune the stability of persistent firing by adjusting the amount of internal feedback. We test this hypothesis by manipulating external visual feedback, a putative sensory error signal, in a model system for persistent firing, the goldfish oculomotor neural integrator. Over tens of minutes to hours, electronically controlled visual feedback consistent with a leaky or unstable integrator can drive the integrator progressively more unstable or leaky, respectively. Eye fixation time constants can be reduced >100-fold to <1 s. Normal visual feedback gradually retunes the integrator back to stability. Changes in the phase of the sinusoidal vestibulo-ocular response are consistent with integrator detuning, as are changes in ocular drift following eye position shifts compensating for brief passive head movements during fixations. Corresponding changes in persistent firing of integrator neurons are presented in the accompanying article. The presence, strength, and reversibility of the plasticity demonstrate that, in this system, external visual feedback plays a vital role in gradually tuning the stability of the neural integrator.
Collapse
Affiliation(s)
- Guy Major
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
33
|
Beck JC, Gilland E, Baker R, Tank DW. Instrumentation for measuring oculomotor performance and plasticity in larval organisms. Methods Cell Biol 2004; 76:385-413. [PMID: 15602884 DOI: 10.1016/s0091-679x(04)76017-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- James C Beck
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|