1
|
Skerswetat J, Formankiewicz MA, Waugh SJ. Contrast-modulated stimuli produce more superimposition and predominate perception when competing with comparable luminance-modulated stimuli during interocular grouping. Sci Rep 2020; 10:13409. [PMID: 32770074 PMCID: PMC7414227 DOI: 10.1038/s41598-020-69527-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Abstract
Interocular grouping (IOG) is a binocular visual function that can arise during multi-stable perception. IOG perception was initiated using split-grating stimuli constructed from luminance (L), luminance-modulated noise (LM) and contrast-modulated noise (CM). In Experiment 1, three different visibility levels were used for L and LM (or first-order) stimuli, and compared to fixed-visibility CM (or second-order) stimuli. Eight binocularly normal participants indicated whether they perceived full horizontal or vertical gratings, superimposition, or other (piecemeal and eye-of-origin) percepts. CM stimuli rarely generated full IOG, but predominantly generated superimposition. In Experiment 2, Levelt's modified laws were tested for IOG in nine participants. Split-gratings presented to each eye contained different visibility LM gratings, or LM and CM gratings. The results for the LM-vs-LM conditions mostly followed the predictions of Levelt's modified laws, whereas the results for the LM-vs-CM conditions did not. Counterintuitively, when high-visibility LM and low-visibility CM split-gratings were used, high-visibility LM components did not predominate IOG perception. Our findings suggest that higher proportions of superimposition during CM-vs-CM viewing are due to binocular combination, rather than mutual inhibition. It implies that IOG percepts are more likely to be mediated at an earlier monocular, rather than a binocular stage. Our previously proposed conceptual framework for conventional binocular rivalry, which includes asymmetric feedback, visual saliency, or a combination of both (Skerswetat et al. Sci Rep 8:14432, 2018), might also account for IOG. We speculate that opponency neurons might mediate coherent percepts when dissimilar information separately enters the eyes.
Collapse
Affiliation(s)
- Jan Skerswetat
- Department of Vision and Hearing Sciences, Anglia Vision Research, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK.
- Department of Psychology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
| | - Monika A Formankiewicz
- Department of Vision and Hearing Sciences, Anglia Vision Research, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| | - Sarah J Waugh
- Department of Vision and Hearing Sciences, Anglia Vision Research, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK
| |
Collapse
|
2
|
Silvestre D, Guy J, Hanck J, Cornish K, Bertone A. Different luminance- and texture-defined contrast sensitivity profiles for school-aged children. Sci Rep 2020; 10:13039. [PMID: 32747677 PMCID: PMC7400652 DOI: 10.1038/s41598-020-69802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Our current understanding of how the visual brain develops is based largely on the study of luminance-defined information processing. This approach, however, is somewhat limiting, since everyday scenes are composed of complex images, consisting of information characterized by physical attributes relating to both luminance and texture. Few studies have explored how contrast sensitivity to texture-defined information develops, particularly throughout the school-aged years. The current study investigated how contrast sensitivity to luminance- (luminance-modulated noise) and texture-defined (contrast-modulated noise) static gratings develops in school-aged children. Contrast sensitivity functions identified distinct profiles for luminance- and texture-defined gratings across spatial frequencies (SFs) and age. Sensitivity to luminance-defined gratings reached maturity in childhood by the ages of 9–10 years for all SFs (0.5, 1, 2, 4 and 8 cycles/degree or cpd). Sensitivity to texture-defined gratings reached maturity at 5–6 years for low SFs and 7–8 years for high SFs (i.e., 4 cpd). These results establish that the processing of luminance- and texture-defined information develop differently as a function of SF and age.
Collapse
Affiliation(s)
- Daphné Silvestre
- Perceptual Neuroscience Lab (PNLab) for Autism and Development, Department of Education and Counselling Psychology, McGill University, 3700 McTavish Street, Montreal, QC, H3A 1Y2, Canada
| | - Jacalyn Guy
- Perceptual Neuroscience Lab (PNLab) for Autism and Development, Department of Education and Counselling Psychology, McGill University, 3700 McTavish Street, Montreal, QC, H3A 1Y2, Canada.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Julie Hanck
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Kim Cornish
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Armando Bertone
- Perceptual Neuroscience Lab (PNLab) for Autism and Development, Department of Education and Counselling Psychology, McGill University, 3700 McTavish Street, Montreal, QC, H3A 1Y2, Canada.
| |
Collapse
|
3
|
Skerswetat J, Formankiewicz MA, Waugh SJ. More superimposition for contrast-modulated than luminance-modulated stimuli during binocular rivalry. Vision Res 2017; 142:40-51. [PMID: 29102622 DOI: 10.1016/j.visres.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/08/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account.
Collapse
Affiliation(s)
- Jan Skerswetat
- Anglia Vision Research, Department of Vision and Hearing Sciences, Anglia Ruskin University, East Road, CB1 1PT Cambridge, UK.
| | - Monika A Formankiewicz
- Anglia Vision Research, Department of Vision and Hearing Sciences, Anglia Ruskin University, East Road, CB1 1PT Cambridge, UK
| | - Sarah J Waugh
- Anglia Vision Research, Department of Vision and Hearing Sciences, Anglia Ruskin University, East Road, CB1 1PT Cambridge, UK
| |
Collapse
|
4
|
Woi PJ, Kaur S, Waugh SJ, Hairol MI. Visual acuity measured with luminance-modulated and contrast-modulated noise letter stimuli in young adults and adults above 50 years old. F1000Res 2017; 5:1961. [PMID: 28184281 PMCID: PMC5289100 DOI: 10.12688/f1000research.9410.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 11/20/2022] Open
Abstract
The human visual system is sensitive in detecting objects that have different luminance level from their background, known as first-order or luminance-modulated (LM) stimuli. We are also able to detect objects that have the same mean luminance as their background, only differing in contrast (or other attributes). Such objects are known as second-order or contrast-modulated (CM), stimuli. CM stimuli are thought to be processed in higher visual areas compared to LM stimuli, and may be more susceptible to ageing. We compared visual acuities (VA) of five healthy older adults (54.0±1.83 years old) and five healthy younger adults (25.4±1.29 years old) with LM and CM letters under monocular and binocular viewing. For monocular viewing, age had no effect on VA [F(1, 8)= 2.50, p> 0.05]. However, there was a significant main effect of age on VA under binocular viewing [F(1, 8)= 5.67, p< 0.05]. Binocular VA with CM letters in younger adults was approximately two lines better than that in older adults. For LM, binocular summation ratios were similar for older (1.16±0.21) and younger (1.15±0.06) adults. For CM, younger adults had higher binocular summation ratio (1.39±0.08) compared to older adults (1.12±0.09). Binocular viewing improved VA with LM letters for both groups similarly. However, in older adults, binocular viewing did not improve VA with CM letters as much as in younger adults. This could reflect a decline of higher visual areas due to ageing process, most likely higher than V1, which may be missed if measured with luminance-based stimuli alone.
Collapse
Affiliation(s)
- Pui Juan Woi
- Optometry and Vision Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Sharanjeet Kaur
- Optometry and Vision Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Sarah J Waugh
- Vision and Hearing Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge Campus, Cambridge, CB1 1PT, UK
| | - Mohd Izzuddin Hairol
- Optometry and Vision Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
5
|
Very few exclusive percepts for contrast-modulated stimuli during binocular rivalry. Vision Res 2016; 121:10-22. [DOI: 10.1016/j.visres.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 11/23/2022]
|
6
|
Abstract
The second-order visual mechanisms perform the operation of integrating the spatially distributed local visual information. Their organization is traditionally considered within the framework of the filter-rectify-filter model. These are the second-order filters that provide the ability to detect texture gradients. However, the question of the mechanisms' selectivity to the modulation dimension remains open. The aim of this investigation is to answer the above question by using visual evoked potentials (VEPs). Stimuli were textures consisting of staggered Gabor patches. The base texture was nonmodulated (NM). Three other textures represented the base texture which was sinusoidally modulated in different dimensions: contrast, orientation, or spatial frequency. EEG was recorded with 20 electrodes. VEPs of 500 ms duration were obtained for each of the four textures. After that, VEP to the NM texture was subtracted from VEP to each modulated texture. As a result, three different waves (d-waves) were obtained for each electrode site. Each d-wave was then averaged across all the 48 observers. The revealed d-waves have a latency of about 200 ms and, in our opinion, reflect the second-order filters reactivation through the feedback connection. The d-waves for different modulation dimensions were compared with each other in time, amplitude, topography, and localization of the sources of activity that causes the d-wave (with sLORETA). We proceeded from the assumption that the d-wave (its first component) represents functioning of the second-order visual mechanisms and activity changes at the following processing stages. It was found that the d-waves for different modulation dimensions significantly differ in all parameters. The obtained results indicate that the spatial modulations of different texture parameters caused specific changes in the brain activity, which could be evidence supporting the specificity of the second-order visual mechanisms to modulation dimension.
Collapse
|
7
|
Rivest JB, Jemel B, Bertone A, McKerral M, Mottron L. Luminance- and texture-defined information processing in school-aged children with autism. PLoS One 2013; 8:e78978. [PMID: 24205355 PMCID: PMC3812000 DOI: 10.1371/journal.pone.0078978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
According to the complexity-specific hypothesis, the efficacy with which individuals with autism spectrum disorder (ASD) process visual information varies according to the extensiveness of the neural network required to process stimuli. Specifically, adults with ASD are less sensitive to texture-defined (or second-order) information, which necessitates the implication of several cortical visual areas. Conversely, the sensitivity to simple, luminance-defined (or first-order) information, which mainly relies on primary visual cortex (V1) activity, has been found to be either superior (static material) or intact (dynamic material) in ASD. It is currently unknown if these autistic perceptual alterations are present in childhood. In the present study, behavioural (threshold) and electrophysiological measures were obtained for static luminance- and texture-defined gratings presented to school-aged children with ASD and compared to those of typically developing children. Our behavioural and electrophysiological (P140) results indicate that luminance processing is likely unremarkable in autistic children. With respect to texture processing, there was no significant threshold difference between groups. However, unlike typical children, autistic children did not show reliable enhancements of brain activity (N230 and P340) in response to texture-defined gratings relative to luminance-defined gratings. This suggests reduced efficiency of neuro-integrative mechanisms operating at a perceptual level in autism. These results are in line with the idea that visual atypicalities mediated by intermediate-scale neural networks emerge before or during the school-age period in autism.
Collapse
Affiliation(s)
- Jessica B. Rivest
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC) and Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Boutheina Jemel
- Research Laboratory in Neuroscience and Cognitive Electrophysiology, Rivière-des-Prairies Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Armando Bertone
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| | - Michelle McKerral
- Centre de Recherche en Neuropsychologie et Cognition (CERNEC) and Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Laurent Mottron
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| |
Collapse
|
8
|
Lateral facilitation revealed dichoptically for luminance-modulated and contrast-modulated stimuli. Vision Res 2010; 50:2530-42. [DOI: 10.1016/j.visres.2010.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/14/2010] [Accepted: 08/20/2010] [Indexed: 11/21/2022]
|
9
|
Hairol MI, Waugh SJ. Lateral interactions across space reveal links between processing streams for luminance-modulated and contrast-modulated stimuli. Vision Res 2010; 50:889-903. [DOI: 10.1016/j.visres.2010.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 11/24/2022]
|
10
|
The dog's meow: asymmetrical interaction in cross-modal object recognition. Exp Brain Res 2008; 193:603-14. [PMID: 19066869 DOI: 10.1007/s00221-008-1664-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
Little is known on cross-modal interaction in complex object recognition. The factors influencing this interaction were investigated using simultaneous presentation of pictures and vocalizations of animals. In separate blocks, the task was to identify either the visual or the auditory stimulus, ignoring the other modality. The pictures and the sounds were congruent (same animal), incongruent (different animals) or neutral (animal with meaningless stimulus). Performance in congruent trials was better than in incongruent trials, regardless of whether subjects attended the visual or the auditory stimuli, but the effect was larger in the latter case. This asymmetry persisted with addition of a long delay after the stimulus and before the response. Thus, the asymmetry cannot be explained by a lack of processing time for the auditory stimulus. However, the asymmetry was eliminated when low-contrast visual stimuli were used. These findings suggest that when visual stimulation is highly informative, it affects auditory recognition more than auditory stimulation affects visual recognition. Nevertheless, this modality dominance is not rigid; it is highly influenced by the quality of the presented information.
Collapse
|
11
|
Conjunction benefits and costs reveal decision priming for first-order and second-order features. PERCEPTION & PSYCHOPHYSICS 2007; 69:1409-21. [PMID: 18078231 DOI: 10.3758/bf03192956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Across two experiments, decision priming was examined for conjunctions composed of first-order or first- and second-order stimulus features. Observers indicated the presence or absence of one or two features in a Gabor stimulus. When a pair of stimulus features differed in their speed of discrimination, responses indicating the presence of a conjunction were faster than those for the single feature for which discrimination was slowest (conjunction benefits). Also, responses indicating the absence of a conjunction were delayed if one of the features was present (conjunction costs). These results show that first- and second-order features can prime decisions about the presence of a conjunction and suggest that the two kinds of signals can be combined at a decision stage after the discrimination of stimulus properties has begun for each system.
Collapse
|