1
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Wang Y, Guan PP, Yu X, Guo YS, Zhang YJ, Wang ZY, Wang P. COX-2 metabolic products, the prostaglandin I 2 and F 2α, mediate the effects of TNF-α and Zn 2+ in stimulating the phosphorylation of Tau. Oncotarget 2017; 8:99296-99311. [PMID: 29245902 PMCID: PMC5725093 DOI: 10.18632/oncotarget.21853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Although the roles of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) in regulating amyloid precursor protein (APP) cleavage and β-amyloid protein (Aβ) production have been the subjects of numerous investigations, their effects on tau phosphorylation have been largely overlooked. Using human TauP301S transgenic (Tg) mice as in vivo model, our results demonstrated that PGI2 and PGF2α mediated the effects of tumor necrosis factor α (TNF-α) and Zinc ions (Zn2+) on upregulating the phosphorylation of tau via the PI3-K/AKT, ERK1/2 and JNK/c-Jun signaling pathways. Specifically, we initially found that high level of Zn2+ upregulates the expression of COX-2 via stimulating the activity of TNF-α in a zinc transporter 3 (ZnT3)-dependent mechanism. COX-2 upregulation then stimulates the phosphorylation of tau at both Ser 202 and Ser 400/Thr 403/Ser 404 via PGI2 and F2α treatment either in i.c.v.-injected mice or in n2a cells. Using n2a cells as in vitro model, we further revealed critical roles for the PI3-K/AKT, ERK1/2 and JNK/c-Jun pathways in mediating the effects of PGI2 and F2α in the phosphorylation of tau. Finally, NS398 treatment delayed the onset of cognitive decline in TauP301S Tg mice according to the nest construction or limb clasping test.
Collapse
Affiliation(s)
- Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China.,Department of Tissue Culture, Liaoning University of Traditional Chinese Medicine, Shenyang, P.R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Yan-Su Guo
- Key laboratory of Hebei Neurology, Hebei Medical University, Shijiazhuang, P.R. China.,Institute of Cardiocerebrovascular Disease, Hebei Medical University, Shijiazhuang, P.R. China
| | - Ying-Jie Zhang
- College of Biology, Hunan University, Changsha, P.R. China.,Shenzhen Institute, Hunan University, Shenzhen, P.R. China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| |
Collapse
|
3
|
Fleischman A, Oron Y, Geyer O. COX-2 Inhibition Improves Retinal Function in Rats' Ischemic Eyes. J Ocul Pharmacol Ther 2014; 30:634-41. [DOI: 10.1089/jop.2013.0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anat Fleischman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoram Oron
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Orna Geyer
- Department of Ophthalmology, Carmel Medical Center, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| |
Collapse
|
4
|
Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 2014; 6:189-200. [DOI: 10.1039/c3mt00291h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58:585-609. [DOI: 10.1016/j.survophthal.2012.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/26/2022]
|
6
|
Bai S, Sheline CR, Zhou Y, Sheline CT. A reduced zinc diet or zinc transporter 3 knockout attenuate light induced zinc accumulation and retinal degeneration. Exp Eye Res 2012; 108:59-67. [PMID: 23274584 DOI: 10.1016/j.exer.2012.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 01/05/2023]
Abstract
Our previous study on retinal light exposure suggests the involvement of zinc (Zn(2+)) toxicity in the death of RPE and photoreceptors (LD) which could be attenuated by pyruvate and nicotinamide, perhaps through restoration of NAD(+) levels. In the present study, we examined Zn(2+) toxicity, and the effects of NAD(+) restoration in primary retinal cultures. We then reduced Zn(2+) levels in rodents by reducing Zn(2+) levels in the diet, or by genetics and measured LD. Sprague Dawley albino rats were fed 2, or 61 mg Zn(2+)/kg of diet for 3 weeks, and exposed to 18 kLux of white light for 4 h. We light exposed (70 kLux of white light for 50 h) Zn(2+) transporter 3 knockout (ZnT3-KO, no synaptic Zn(2+)), or RPE65 knockout mice (RPE65-KO, lack rhodopsin cycling), or C57/BI6/J controls and determined light damage and Zn(2+) staining. Retinal Zn(2+) staining was examined at 1 h and 4 h after light exposure. Retinas were examined after 7 d by optical coherence tomography and histology. After LD, rats fed the reduced Zn(2+) diet showed less photoreceptor Zn(2+) staining and degeneration compared to a normal Zn(2+) diet. Similarly, ZnT3-KO and RPE65-KO mice showed less Zn(2+) staining, NAD(+) loss, and RPE or photoreceptor death than C57/BI6/J control mice. Dietary or ZnT3-dependent Zn(2+) stores, and intracellular Zn(2+) release from rhodopsin recycling are suggested to be involved in light-induced retinal degeneration. These results implicate novel rhodopsin-mediated mechanisms and therapeutic targets for LD. Our companion manuscript demonstrates that pharmacologic, circadian, or genetic manipulations which maintain NAD(+) levels reduce LD.
Collapse
Affiliation(s)
- Shi Bai
- Department of Ophthalmology and The Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
7
|
Bai S, Sheline CT. NAD(+) maintenance attenuates light induced photoreceptor degeneration. Exp Eye Res 2012; 108:76-83. [PMID: 23274583 DOI: 10.1016/j.exer.2012.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 12/18/2022]
Abstract
Light-induced retinal damage (LD) occurs after surgery or sun exposure. We previously showed that zinc (Zn(2+)) accumulated in photoreceptors and RPE cells after LD but prior to cell death, and pyruvate or nicotinamide attenuated the resultant death perhaps by restoring nicotinamide adenine dinucleotide (NAD(+)) levels. We first examined the levels of NAD(+) and the efficacy of pyruvate or nicotinamide in oxidative toxicities using primary retinal cultures. We next manipulated NAD(+) levels in vivo and tested the affect on LD to photoreceptors and RPE. NAD(+) levels cycle with a 24-h rhythm in mammals, which is affected by the feeding schedule. Therefore, we tested the affect of increasing NAD(+) levels on LD by giving nicotinamide, inverting the feeding schedule, or using transgenic mice which overexpress cytoplasmic nicotinamide mononucleotide adenyl-transferase-1 (cytNMNAT1), an NAD(+) synthetic enzyme. Zn(2+) accumulation was also assessed in culture and in retinal sections. Retinas of light damaged animals were examined by OCT and plastic sectioning, and retinal NAD(+) levels were measured. Day fed, or nicotinamide treated rats showed less NAD(+) loss, and LD compared to night fed rats or untreated rats without changing the Zn(2+) staining pattern. CytNMNAT1 showed less Zn(2+) staining, NAD(+) loss, and cell death after LD. In conclusion, intense light, Zn(2+) and oxidative toxicities caused an increase in Zn(2+), NAD(+) loss, and cell death which were attenuated by NAD(+) restoration. Therefore, NAD(+) levels play a protective role in LD-induced death of photoreceptors and RPE cells.
Collapse
Affiliation(s)
- Shi Bai
- Dept. of Ophthalmology and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA.
| | | |
Collapse
|
8
|
Abstract
Retinal ischemia is a common clinical entity and, due to relatively ineffective treatment, remains a common cause of visual impairment and blindness. Generally, ischemic syndromes are initially characterized by low homeostatic responses which, with time, induce injury to the tissue due to cell loss by apoptosis. In this respect, retinal ischemia is a primary cause of neuronal death. It can be considered as a sort of final common pathway in retinal diseases and results in irreversible morphological and functional changes. This review summarizes the recent knowledge on the effects of ischemia in retinal tissue and points out experimental strategies/models performed to gain better comprehension of retinal ischemia diseases. In particular, the nature of the mechanisms leading to neuronal damage (i.e., excess of glutamate release, oxidative stress and inflammation) will be outlined as well as the potential and most intriguing retinoprotective approaches and the possible therapeutic use of naturally occurring molecules such as neuropeptides. There is a general agreement that a better understanding of the fundamental pathophysiology of retinal ischemia will lead to better management and improved clinical outcome. In this respect, to contrast this pathological state, specific pharmacological strategies need to be developed aimed at the many putative cascades generated during ischemia.
Collapse
|
9
|
Choi A, Choi JS, Yoon YJ, Kim KA, Joo CK. KR-31378, a potassium-channel opener, induces the protection of retinal ganglion cells in rat retinal ischemic models. J Pharmacol Sci 2009; 109:511-7. [PMID: 19372634 DOI: 10.1254/jphs.fp0072067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
KR-31378 is a newly developed K(ATP)-channel opener. To investigate the ability of KR-31378 to protect retinal ganglion cells (RGC), experiments were conducted using two retinal ischemia models. Retinal ischemia was induced by transient high intraocular pressure (IOP) for acute ischemia and by three episcleral vein occlusion for chronic retinal ischemia. KR-31378 was injected intraperitoneally and administered orally in the acute and chronic ischemia models, respectively. Under the condition of chronic ischemia, RGC density in the KR-31378-treated group was statistically higher than that in the non-treated group, and IOP was reduced. In the acute retinal ischemia model, 90% of RGC were degenerated after one week in non-treated retina, but, RGC in KR-31378-treated retina were protected from ischemic damage in a dose-dependent manner and showed inhibited glial fibrillary acidic protein (GFAP) expression. Furthermore, the KR-31378 protective effect was inhibited by glibenclamide treatment in acute ischemia. These findings indicate that systemic KR-31378 treatment may protect against ischemic injury-induced ganglion cell loss in glaucoma.
Collapse
Affiliation(s)
- Anho Choi
- Department of Ophthalmology and Visual Science, College of Medicine and Korean Eye and Gene Bank Related to Blindness, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | |
Collapse
|
10
|
Kang MS, Choi EK, Choi DH, Ryu SY, Lee HH, Kang HC, Koh JT, Kim OS, Hwang YC, Yoon SJ, Kim SM, Yang KH, Kang IC. Antibacterial activity of pyrrolidine dithiocarbamate. FEMS Microbiol Lett 2008; 280:250-4. [PMID: 18248425 DOI: 10.1111/j.1574-6968.2008.01069.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC), an antioxidant with a metal-chelating activity, has been used widely to inhibit the expression of inflammatory genes in vitro and in vivo. This study investigated whether PDTC has an antimicrobial activity against various bacteria. The antibacterial activity of PDTC and other compounds was evaluated in vitro by the broth microdilution method against Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Staphylococcus aureus, and Escherichia coli. Bacterial growth was inhibited by PDTC, where a wide range of sensitivity was demonstrated among the tested bacteria. The antibacterial activity of PDTC was reduced by the addition of copper chloride; in contrast, it was enhanced considerably by zinc chloride. Two different zinc chelators, Ca-saturated EDTA (Ca-EDTA) and N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine, blocked the antibacterial activity of PDTC, whereas Zn-EDTA failed to reduce the activity of PDTC. These results demonstrate for the first time that PDTC possesses an antibacterial activity, for which zinc is required, and suggest that PDTC, possessing a dual anti-inflammatory and antibacterial activity, may be considered for topical use for inflammatory diseases of bacterial origin.
Collapse
Affiliation(s)
- Mi-Sun Kang
- Brain Korea 21 Program, Chonnam National University, Kwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|