1
|
Escobar-Camacho D, Carleton KL, Narain DW, Pierotti MER. Visual pigment evolution in Characiformes: The dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning. Mol Ecol 2020; 29:2234-2253. [PMID: 32421918 DOI: 10.1111/mec.15474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/06/2023]
Abstract
Vision represents an excellent model for studying adaptation, given the genotype-to-phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1 /A2 -chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS- and RH1-duplicates originated from a teleost specific whole-genome duplication as well as characiform-specific duplication events. Both LWS-opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS-paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS-paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1 /A2 -chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.
Collapse
Affiliation(s)
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Devika W Narain
- Environmental Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Michele E R Pierotti
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
2
|
Srinivasan S, Guixà-González R, Cordomí A, Garriga P. Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends Biochem Sci 2019; 44:629-639. [PMID: 30853245 DOI: 10.1016/j.tibs.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Vertebrate vision starts with light absorption by visual pigments in rod and cone photoreceptor cells of the retina. Rhodopsin, in rod cells, responds to dim light, whereas three types of cone opsins (red, green, and blue) function under bright light and mediate color vision. Cone opsins regenerate with retinal much faster than rhodopsin, but the molecular mechanism of regeneration is still unclear. Recent advances in the area pinpoint transient intermediate opsin conformations, and a possible secondary retinal-binding site, as determinant factors for regeneration. In this Review, we compile previous and recent findings to discuss possible mechanisms of ligand entry in cone opsins, involving a secondary binding site, which may have relevant functional and evolutionary implications.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ramon Guixà-González
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computational, Universitat Autonòma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain.
| |
Collapse
|
3
|
Seno K, Hayashi F. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. J Biol Chem 2017; 292:15321-15328. [PMID: 28747438 DOI: 10.1074/jbc.m117.804880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/23/2017] [Indexed: 01/07/2023] Open
Abstract
The visual photopigment rhodopsin (Rh) is a prototypical G protein-coupled receptor (GPCR) responsible for initiation of the phototransduction cascade in rod photoreceptors. Similar to other GPCRs, Rh can form dimers or even higher oligomers and tends to have a supramolecular organization that is likely important in the dim light response. Rh also exhibits high affinity for lipid rafts (i.e. raftophilicity) upon light-dependent binding with the cognate G protein transducin (Gt), suggesting the presence of lipid raft-like domains in the retinal disk membrane and their importance in phototransduction. However, the relationship between Rh oligomerization and lipid rafts in the disk membrane remains to be explored. Given previous findings that Gt binds to dimeric Rh and that Rh is posttranslationally modified with two highly raftophilic palmitoyl moieties, we hypothesized that Rh becomes raftophilic upon dimerization. Here, using biochemical assays, we found that Rh*-Gt complexes in the detergent-resistant membrane are partially resistant to cholesterol depletion by methyl-β-cyclodextrin and that the Rh-to-Gt stoichiometry in this methyl-β-cyclodextrin-resistant complex is 2:1. Next, we found that IgG-mediated Rh-Rh cross-linking renders Rh highly raftophilic, supporting the premise that Rh becomes raftophilic upon dimerization. Rh depalmitoylation via reduction of thioester linkages blocked the translocation of IgG-cross-linked Rh to the detergent-resistant membrane, highlighting that the two palmitoyl moieties are important for the dimerization-dependent raftophilicity of Rh. These results indicate that palmitoylated GPCRs such as Rh can acquire raftophilicity upon G protein-stabilized dimerization and thereby organize receptor-cluster rafts by recruiting raftophilic lipids.
Collapse
Affiliation(s)
- Keiji Seno
- From the Department of Biology, Faculty of Medicine, and.,International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan and
| | - Fumio Hayashi
- the Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
4
|
The Degeneration and Apoptosis Patterns of Cone Photoreceptors in rd11 Mice. J Ophthalmol 2017; 2017:9721362. [PMID: 28168050 PMCID: PMC5266847 DOI: 10.1155/2017/9721362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 12/15/2022] Open
Abstract
The retinal degeneration 11 (rd11) mouse is a new animal model with rapid photoreceptor degeneration. The long-term efficacy of gene therapy has a direct relationship with the onset of photoreceptor degeneration or apoptosis, whereas the degeneration or apoptosis patterns of photoreceptors are still unclear in rd11 mice. The distribution patterns of cone function-related L- and S-opsin were examined by immunofluorescence staining, and the apoptosis was performed by TUNEL assay in rd11 mice. The expression pattern of L-opsin or S-opsin in rd11 retina at postnatal day (P) 14 was similar to the pattern observed in wildtype retina. With increasing age, the expression of L-opsin and S-opsin, especially S-opsin, decreased significantly in rd11 mice. The degeneration of L-opsin began around the optic nerve and expanded to the periphery of the retina, from the ventral/nasal to dorsal/temporal retina, whereas the expression of S-opsin gradually decreased from the dorsal/temporal to ventral/nasal retina. Apoptotic signal appeared at P14 and was strongest at P28 of rd11 mice. The key genes associated with apoptosis confirmed those changes. These indicated that the degeneration and apoptosis of cone photoreceptors began at P14 of rd11 mice, which was a key point for gene therapy.
Collapse
|
5
|
Bowrey HE, Anderson DM, Pallitto P, Gutierrez DB, Fan J, Crouch RK, Schey KL, Ablonczy Z. Imaging mass spectrometry of the visual system: Advancing the molecular understanding of retina degenerations. Proteomics Clin Appl 2016; 10:391-402. [PMID: 26586164 DOI: 10.1002/prca.201500103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 08/15/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022]
Abstract
Visual sensation is fundamental for quality of life, and loss of vision to retinal degeneration is a debilitating condition. The eye is the only part of the central nervous system that can be noninvasively observed with optical imaging. In the clinics, various spectroscopic methods provide high spatial resolution images of the fundus and the developing degenerative lesions. However, the currently utilized tools are not specific enough to establish the molecular underpinnings of retinal diseases. In contrast, mass spectrometric imaging (MSI) is a powerful tool to identify molecularly specific disease indicators and classification markers. This technique is particularly well suited to the eye, where molecular information can be correlated with clinical data collected via noninvasive diagnostic imaging modalities. Recent studies during the last few recent years have uncovered a plethora of new spatially defined molecular information on several vision-threatening diseases, including age-related macular degeneration, Stargardt disease, glaucoma, cataract, as well as lipid disorders. Even though MS inside the eye cannot be performed noninvasively, by linking diagnostic and molecular information, these studies are the first step toward the development of smart ophthalmic diagnostic and surgical tools. Here, we provide an overview of current approaches applying MSI technology to ocular pathology.
Collapse
Affiliation(s)
- Hannah E Bowrey
- Brain Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - David M Anderson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Patrick Pallitto
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Danielle B Gutierrez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jie Fan
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Rosalie K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 2012; 32:48-63. [PMID: 23063666 DOI: 10.1016/j.preteyeres.2012.09.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 01/05/2023]
Abstract
The retinoid cycle is a series of biochemical reactions within the eye that is responsible for synthesizing the chromophore, 11-cis retinal, for visual function. The chromophore is bound to G-protein coupled receptors, opsins, within rod and cone photoreceptor cells forming the photosensitive visual pigments. Integral to the sustained function of photoreceptors is the continuous generation of chromophore by the retinoid cycle through two separate processes, one that supplies both rods and cones and another that exclusively supplies cones. Recent findings such as RPE65 localization within cones and the pattern of distribution of retinoid metabolites within mouse and human retinas have challenged previous proposed schemes. This review will focus on recent findings regarding the transport of retinoids, the mechanisms by which chromophore is supplied to both rods and cones, and the metabolism of retinoids within the posterior segment of the eye.
Collapse
Affiliation(s)
- Peter H Tang
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
7
|
Makino CL, Riley CK, Looney J, Crouch RK, Okada T. Binding of more than one retinoid to visual opsins. Biophys J 2011; 99:2366-73. [PMID: 20923672 DOI: 10.1016/j.bpj.2010.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] Open
Abstract
Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, β-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more β-ionones per rhodopsin. X-ray crystallography revealed binding of one β-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of β-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind β-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but β-ionone binds to the latter type of rhodopsin with low affinity and low efficacy.
Collapse
Affiliation(s)
- Clint L Makino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
8
|
Morrow JM, Chang BSW. The p1D4-hrGFP II expression vector: a tool for expressing and purifying visual pigments and other G protein-coupled receptors. Plasmid 2010; 64:162-9. [PMID: 20627111 DOI: 10.1016/j.plasmid.2010.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 11/19/2022]
Abstract
The heterologous expression of membrane proteins such as G protein-coupled receptors can be a notoriously difficult task. We have engineered an expression vector, p1D4-hrGFP II, in order to efficiently express visual pigments in mammalian cell culture. This expression vector is based on pIRES-hrGFP II (Stratagene), with the addition of a C-terminal 1D4 epitope tag for immunoblotting and immunoaffinity purification. This vector employs the CMV promoter and hrGFP II, a co-translated reporter gene. We measured the effectiveness of pIRES-hrGFP II in expressing bovine rhodopsin, and showed a 3.9- to 5.7-fold increase in expression as measured by absorbance spectroscopy as compared with the pMT vector, a common choice for visual pigment expression. We then expressed zebrafish RH2-1 using p1D4-hrGFP II in order to assess its utility in expressing cone opsins, known to be less stable and more difficult to express than bovine rhodopsin. We show a λ(280)/λ(MAX) value of 3.3, one third of that reported in previous studies, suggesting increased expression levels and decreased levels of misfolded, non-functional visual pigment. Finally, we monitored HEK293T cell growth following transfection with pIRES-hrGFP II using fluorescence microscopy to illustrate the benefits of having a co-translated reporter during heterologous expression studies.
Collapse
Affiliation(s)
- James M Morrow
- Department of Cell & Systems Biology, University of Toronto, Room 501, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Chen Y, Wu Y, Henklein P, Li X, Hofmann KP, Nakanishi K, Ernst O. A Photo-Cross-Linking Strategy to Map Sites of Protein-Protein Interactions. Chemistry 2010; 16:7389-94. [DOI: 10.1002/chem.201000441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Abstract
S-palmitoylation is a conserved feature in many G protein-coupled receptors (GPCRs) involved in a broad array of signaling processes. The prototypical GPCR, rhodopsin, is S-palmitoylated on two adjacent C-terminal Cys residues at its cytoplasmic surface. Surprisingly, absence of palmitoylation has only a modest effect on in vitro or in vivo signaling. Here, we report that palmitoylation-deficient (Palm(-/-)) mice carrying two Cys to Thr and Ser mutations in the opsin gene displayed profound light-induced retinal degeneration that first involved rod and then cone cells. After brief bright light exposure, their retinas exhibited two types of deposits containing nucleic acid and invasive phagocytic macrophages. When Palm(-/-) mice were crossed with Lrat(-/-) mice lacking lecithin:retinol acyl transferase to eliminate retinoid binding to opsin and thereby rendering the eye insensitive to light, rapid retinal degeneration occurred even in 3- to 4-week-old animals. This rapid degeneration suggests that nonpalmitoylated rod opsin is unstable. Treatment of 2-week-old Palm(-/-)Lrat(-/-) mice with an artificial chromophore precursor prevented this retinopathy. In contrast, elimination of signaling to G protein in Palm(-/-)Gnat1(-/-) mice had no effect, indicating that instability of unpalmitoylated opsin lacking chromophore rather than aberrant signal transduction resulted in retinal pathology. Together, these observations provide evidence for a structural role of rhodopsin S-palmitoylation that may apply to other GPCRs as well.
Collapse
|
11
|
Abstract
The retina of vertebrates contains two kinds of photoreceptor cells, rods and cones, which contain their specific visual pigments that are responsible for scotopic and photopic vision, respectively. In cone photoreceptor cells, there are three types of color pigments: blue, green and red, each with a distinctive absorption maximum. The goal of this investigation was to identify optimal conditions under which these pigments could be obtained and isolated in a stable form, thereby facilitating structural studies using high-resolution approaches. For this purpose, all three human cone opsins were initially expressed in mammalian cells, reconstituted with 11-cis retinal, detergent solubilized, purified and their stability compared with rod rhodopsin. As all three pigments showed dramatically reduced stability relative to rhodopsin, site-directed mutagenesis was used in an attempt to engineer stability into the green cone pigment. The mutations introduced some structural motifs and sites of posttranslational modification present in rhodopsin, as well as amino acid substitutions that have been found to stabilize the rod opsin apo-protein. We also modified the hydrophobic environment of the green cone pigment by varying the detergent and detergent/lipid composition used during solubilization and purification, and compared them with the retinal reconstituted pigment in membranes. Our results show that these changes do not significantly improve the inherent instability of the human cone pigments, and in some cases, lead to a decrease in stability and protein aggregation. We conclude that further efforts are required to stabilize the human cone pigments in a form suitable for high-resolution structural studies.
Collapse
Affiliation(s)
- Eva Ramon
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center-Houston, Houston, TX, USA
| | | | | |
Collapse
|
12
|
Jackson W, Ablonczy Z, Crouch RK. Quantitation of the effect of hydroxylamine on rhodopsin palmitylation. Photochem Photobiol 2008; 84:949-55. [PMID: 18399918 DOI: 10.1111/j.1751-1097.2008.00334.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin (the photosensitive rod visual pigment) has been a model for photobiologic studies of the opsins as well as a structural model for G-protein-coupled receptors. The two palmitate groups attached to cysteines 322 and 323 are thought to serve as membrane anchors for the rhodopsin C-terminus, but the absence of the palmitates does not alter membrane localization. However, removal of the palmitates affects rhodopsin function. Therefore, it is important to quantitate the stability of rhodopsin palmitates to hydroxylamine, which is a widely utilized reagent in biochemical preparations of the apoprotein. We have developed a mass spectrometric method to quantitate the resulting opsin palmitylation. Our data show that both of the bovine rhodopsin palmitates are labile to hydroxylamine, with significant depalmitylation occurring at concentrations of >or=100 mM, with an EC(50) of 220 mM L(-1). The palmitate at position 322 is the more stable to hydroxylamine. Samples prepared in the presence of >50 mM should therefore be considered to be at least partially depalmitylated and the results interpreted accordingly.
Collapse
Affiliation(s)
- Wesley Jackson
- Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
13
|
Fan J, Rohrer B, Frederick JM, Baehr W, Crouch RK. Rpe65-/- and Lrat-/- mice: comparable models of leber congenital amaurosis. Invest Ophthalmol Vis Sci 2008; 49:2384-9. [PMID: 18296659 DOI: 10.1167/iovs.08-1727] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The Rpe65-/- mouse, used as a model for Leber congenital amaurosis, has slow rod degeneration and rapid cone loss, presumably because of the mistrafficking of cone opsins. This animal does not generate 11-cis retinal, and both cone loss and rod response are restored by 11-cis retinal administration. Similarly, the Lrat-/- mouse does not produce 11-cis retinal. The authors sought to determine whether the same effects on rod and cone opsins in the Rpe65-/- mouse are also present in the Lrat-/- mouse, thereby establishing that these changes can be attributed to the lack of 11-cis retinal rather than to some unknown function of RPE65. METHODS Rod and cone opsins were localized by immunohistochemical methods. Functional opsin levels were determined by regeneration with 11-cis retinal. Isorhodopsin levels were determined from pigment extraction. Opsin phosphorylation was determined by mass spectrometry. RESULTS Rods in both models degenerated slowly. Regenerable rod opsin levels were similar over the 6-month time course investigated, rod opsin was phosphorylated at a low level (approximately 10%), and minimal 9-cis retinal was generated by a nonphotic process, giving a trace light response. In both models, S-opsin and M/L-opsin failed to traffic to the cone outer segments appropriately, and rapid cone degeneration occurred. Cone opsin mistrafficking in both models was arrested on 11-cis retinal administration. CONCLUSIONS These data show that the Lrat-/- and Rpe65-/- mice are comparable models for studies of Leber congenital amaurosis and that the destructive cone opsin mistrafficking is caused by the lack of 11-cis retinal.
Collapse
Affiliation(s)
- Jie Fan
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29402, USA
| | | | | | | | | |
Collapse
|