1
|
Behavioral signatures of Y-like neuronal responses in human vision. Sci Rep 2022; 12:19116. [PMID: 36352245 PMCID: PMC9646870 DOI: 10.1038/s41598-022-23293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
Retinal ganglion cells initiating the magnocellular/Y-cell visual pathways respond nonlinearly to high spatial frequencies (SFs) and temporal frequencies (TFs). This nonlinearity is implicated in the processing of contrast modulation (CM) stimuli in cats and monkeys, but its contribution to human visual perception is not well understood. Here, we evaluate human psychophysical performance for CM stimuli, consisting of a high SF grating carrier whose contrast is modulated by a low SF sinewave envelope. Subjects reported the direction of motion of CM envelopes or luminance modulation (LM) gratings at different eccentricities. The performance on SF (for LMs) or carrier SF (for CMs) was measured for different TFs (LMs) or carrier TFs (CMs). The best performance for LMs was at lower TFs and SFs, decreasing systematically with eccentricity. However, performance with CMs was bandpass with carrier SF, largely independent of carrier TF, and at the highest carrier TF (20 Hz) decreased minimally with eccentricity. Since the nonlinear subunits of Y-cells respond better at higher TFs compared to the linear response components and respond best at higher SFs that are relatively independent of eccentricity, these results suggest that behavioral tasks employing CM stimuli might reveal nonlinear contributions of retinal Y-like cells to human perception.
Collapse
|
2
|
Chima AS, Formankiewicz MA, Waugh SJ. Interocular ND filter suppression: Eccentricity and luminance polarity effects. J Vis 2020; 20:35. [PMID: 32735341 PMCID: PMC7424104 DOI: 10.1167/jov.20.7.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The depth and extent of interocular suppression were measured in binocularly normal observers who unilaterally adapted to neutral density (ND) filters (0, 1.5, 2, and 3 ND). Suppression was measured by dichoptically matching sectors of a ring presented to the adapted eye to a fixed contrast contiguous ring presented to the non-adapted eye. Other rings of alternating polarity were viewed binocularly. Rings were defined by luminance (L), luminance with added dynamic binary luminance noise (LM), and contrast modulating the same noise (CM). Interocular suppression depth increased with increasing ND, nearing significance (p = 0.058) for 1.5 ND. For L and LM stimuli, suppression depth across eccentricity (±12° visual field) differed for luminance increment (white) versus luminance decrement (black) stimuli, potentially confounding eccentricity results. Suppression for increment-only (white) luminance stimuli was steeper centrally and extended across the visual field, but was deeper for L than for LM stimuli. Suppression for decrement-only (black) luminance stimuli revealed only central suppression. Suppression was deeper with CM than LM stimuli, suggesting that CM stimuli are extracted in areas receiving predominantly binocular input which may be more sensitive to binocular disruption. Increment (white) luminance stimuli demonstrate deeper interocular suppression in the periphery than decrement (black) stimuli, so they are more sensitive to changes in peripheral suppression. Asymmetry of suppression in the periphery for opposite polarity luminance stimuli may be due to interocular receptive field size mismatch as a result of dark adaptation separately affecting ON and OFF pathways. Clinically, measurement of suppression with CM stimuli may provide the best information about post-combination binocularity.
Collapse
|
3
|
Fulcher C, McGraw PV, Roach NW, Whitaker D, Heron J. Object size determines the spatial spread of visual time. Proc Biol Sci 2017; 283:rspb.2016.1024. [PMID: 27466452 PMCID: PMC4971211 DOI: 10.1098/rspb.2016.1024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 11/12/2022] Open
Abstract
A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus-the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing.
Collapse
Affiliation(s)
- Corinne Fulcher
- Bradford School of Optometry and Vision Science, University of Bradford, BD7 1DP Bradford, UK
| | - Paul V McGraw
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Neil W Roach
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham NG7 2RD, UK
| | - David Whitaker
- School of Optometry and Vision Sciences, University of Cardiff, Maindy Road, Cathays, Cardiff CF24 4HQ, UK
| | - James Heron
- Bradford School of Optometry and Vision Science, University of Bradford, BD7 1DP Bradford, UK
| |
Collapse
|
4
|
Skerswetat J, Formankiewicz MA, Waugh SJ. More superimposition for contrast-modulated than luminance-modulated stimuli during binocular rivalry. Vision Res 2017; 142:40-51. [PMID: 29102622 DOI: 10.1016/j.visres.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/08/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account.
Collapse
Affiliation(s)
- Jan Skerswetat
- Anglia Vision Research, Department of Vision and Hearing Sciences, Anglia Ruskin University, East Road, CB1 1PT Cambridge, UK.
| | - Monika A Formankiewicz
- Anglia Vision Research, Department of Vision and Hearing Sciences, Anglia Ruskin University, East Road, CB1 1PT Cambridge, UK
| | - Sarah J Waugh
- Anglia Vision Research, Department of Vision and Hearing Sciences, Anglia Ruskin University, East Road, CB1 1PT Cambridge, UK
| |
Collapse
|
5
|
Woi PJ, Kaur S, Waugh SJ, Hairol MI. Visual acuity measured with luminance-modulated and contrast-modulated noise letter stimuli in young adults and adults above 50 years old. F1000Res 2017; 5:1961. [PMID: 28184281 PMCID: PMC5289100 DOI: 10.12688/f1000research.9410.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 11/20/2022] Open
Abstract
The human visual system is sensitive in detecting objects that have different luminance level from their background, known as first-order or luminance-modulated (LM) stimuli. We are also able to detect objects that have the same mean luminance as their background, only differing in contrast (or other attributes). Such objects are known as second-order or contrast-modulated (CM), stimuli. CM stimuli are thought to be processed in higher visual areas compared to LM stimuli, and may be more susceptible to ageing. We compared visual acuities (VA) of five healthy older adults (54.0±1.83 years old) and five healthy younger adults (25.4±1.29 years old) with LM and CM letters under monocular and binocular viewing. For monocular viewing, age had no effect on VA [F(1, 8)= 2.50, p> 0.05]. However, there was a significant main effect of age on VA under binocular viewing [F(1, 8)= 5.67, p< 0.05]. Binocular VA with CM letters in younger adults was approximately two lines better than that in older adults. For LM, binocular summation ratios were similar for older (1.16±0.21) and younger (1.15±0.06) adults. For CM, younger adults had higher binocular summation ratio (1.39±0.08) compared to older adults (1.12±0.09). Binocular viewing improved VA with LM letters for both groups similarly. However, in older adults, binocular viewing did not improve VA with CM letters as much as in younger adults. This could reflect a decline of higher visual areas due to ageing process, most likely higher than V1, which may be missed if measured with luminance-based stimuli alone.
Collapse
Affiliation(s)
- Pui Juan Woi
- Optometry and Vision Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Sharanjeet Kaur
- Optometry and Vision Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Sarah J Waugh
- Vision and Hearing Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge Campus, Cambridge, CB1 1PT, UK
| | - Mohd Izzuddin Hairol
- Optometry and Vision Sciences Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
6
|
Very few exclusive percepts for contrast-modulated stimuli during binocular rivalry. Vision Res 2016; 121:10-22. [DOI: 10.1016/j.visres.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 11/23/2022]
|
7
|
Piponnier JC, Forget R, Gagnon I, McKerral M, Giguère JF, Faubert J. First- and Second-Order Stimuli Reaction Time Measures Are Highly Sensitive to Mild Traumatic Brain Injuries. J Neurotrauma 2015; 33:242-53. [PMID: 25950948 DOI: 10.1089/neu.2014.3832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mild traumatic brain injury (mTBI) has subtle effects on several brain functions that can be difficult to assess and follow up. We investigated the impact of mTBI on the perception of sine-wave gratings defined by first- and second-order characteristics. Fifteen adults diagnosed with mTBI were assessed at 15 days, 3 months, and 12 months postinjury. Fifteen matched controls followed the same testing schedule. Reaction times (RTs) for flicker detection and motion direction discrimination were measured. Stimulus contrast of first- and second-order patterns was equated to control for visibility, and correct-response RT means, standard deviations (SDs), medians, and interquartile ranges (IQRs) were calculated. The level of symptoms was also evaluated to compare it to RT data. In general in mTBI, RTs were longer, and SDs as well as IQRs larger, than those of controls. In addition, mTBI participants' RTs to first-order stimuli were shorter than those to second-order stimuli, and SDs as well as IQRs larger for first- than for second-order stimuli in the motion condition. All these observations were made over the three sessions. The level of symptoms observed in mTBI was higher than that of control participants, and this difference did also persist up to 1 year after the brain injury, despite an improvement. The combination of RT measures with particular stimulus properties is a highly sensitive method for measuring mTBI-induced visuomotor anomalies and provides a fine probe of the underlying mechanisms when the brain is exposed to mild trauma.
Collapse
Affiliation(s)
- Jean-Claude Piponnier
- 1 Visual Psychophysics and Perception Laboratory, École d'Optométrie, Université de Montréal , Montréal, QC, Canada
| | - Robert Forget
- 2 École de réadaptation, Université de Montréal , and Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, Montréal, QC, Canada
| | - Isabelle Gagnon
- 3 Montreal Children's Hospital, McGill University Health Center, and School of Physical and Occupational Therapy, McGill University , Montreal, Montréal, QC, Canada
| | - Michelle McKerral
- 4 Centre de recherche interdisciplinaire en réadaptation-Centre de réadaptation Lucie-Bruneau, and Département de psychologie, Université de Montréal , Montréal, QC, Canada
| | - Jean-François Giguère
- 5 Department of Surgery, Sacré-Coeur Hospital affiliated with Université de Montréal , Montréal, QC, Canada
| | - Jocelyn Faubert
- 1 Visual Psychophysics and Perception Laboratory, École d'Optométrie, Université de Montréal , Montréal, QC, Canada
| |
Collapse
|
8
|
Foveal visual acuity is worse and shows stronger contour interaction effects for contrast-modulated than luminance-modulated Cs. Vis Neurosci 2013; 30:105-20. [PMID: 23731769 DOI: 10.1017/s0952523813000102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Contrast-modulated (CM) stimuli are processed by spatial mechanisms that operate at larger spatial scales than those processing luminance-modulated (LM) stimuli and may be more prone to deficits in developing, amblyopic, and aging visual systems. Understanding neural mechanisms of contour interaction or crowding will help in detecting disorders of spatial vision. In this study, contour interaction effects on visual acuity for LM and CM C and bar stimuli are assessed in normal foveal vision. In Experiment 1, visual acuity is measured for all-LM and all-CM stimuli, at ~3.5× above their respective modulation thresholds. In Experiment 2, visual acuity is measured for Cs and bars of different type (LM C with CM bars and vice versa). Visual acuity is degraded for CM compared with LM Cs (0.46 ± 0.04 logMAR vs. 0.18 ± 0.04 logMAR). With nearby bars, CM acuity is degraded further (0.23 ± 0.01 logMAR or ~2 lines on an acuity chart), significantly more than LM acuity (0.11 ± 0.01 logMAR, ~1 line). Contour interaction for CM stimuli extends over greater distances (arcmin) than it does for LM stimuli, but extents are similar with respect to acuities (~3.5× the C gap width). Contour interaction is evident when the Cs and bars are defined differently: it is stronger when an LM C is flanked by CM bars (0.17 ± 0.03 logMAR) than when a CM C is flanked by LM bars (0.08 ± 0.02 logMAR). Our results suggest that contour interaction for foveally viewed acuity stimuli involves feature integration, such that the outputs of receptive fields representing Cs and bars are combined. Contour interaction operates at LM and CM representational stages, it can occur across stage, and it is enhanced at the CM stage. Greater contour interaction for CM Cs and bars could hold value for visual acuity testing and earlier diagnosis of conditions for which crowding is important, such as in amblyopia.
Collapse
|
9
|
Lateral facilitation revealed dichoptically for luminance-modulated and contrast-modulated stimuli. Vision Res 2010; 50:2530-42. [DOI: 10.1016/j.visres.2010.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/14/2010] [Accepted: 08/20/2010] [Indexed: 11/21/2022]
|
10
|
Hutchinson CV, Ledgeway T. Spatial summation of first-order and second-order motion in human vision. Vision Res 2010; 50:1766-74. [PMID: 20570691 DOI: 10.1016/j.visres.2010.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 11/15/2022]
Abstract
This study assessed spatial summation of first-order (luminance-defined) and second-order (contrast-defined) motion. Thresholds were measured for identifying the drift direction of 1c/deg., luminance-modulated and contrast-modulated dynamic noise drifting at temporal frequencies of 0.5, 2 and 8Hz. Image size varied from 0.125 degrees to 16 degrees . The effects of increasing image size on thresholds for luminance-modulated noise were also compared to those for luminance-defined gratings. In all cases, performance improved as image size increased. The rate at which performance improved with increasing image size was similar for all stimuli employed although the slopes corresponding to the initial improvement were steeper for first-order compared to second-order motion. The image sizes at which performance for first-order motion asymptote were larger than for second-order motion. In addition, findings showed that the minimum image size required to support reliable identification of the direction of moving stimuli is greater for second-order than first-order motion. Thus, although first-order and second-order motion processing have a number of properties in common, the visual system's sensitivity to each type of motion as a function of image size is quite different.
Collapse
|
11
|
Hairol MI, Waugh SJ. Lateral interactions across space reveal links between processing streams for luminance-modulated and contrast-modulated stimuli. Vision Res 2010; 50:889-903. [DOI: 10.1016/j.visres.2010.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 11/24/2022]
|
12
|
Edwards M, Metcalf O. Independence in the processing of first- and second-order motion signals at the local-motion-pooling level. Vision Res 2010; 50:261-70. [DOI: 10.1016/j.visres.2009.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/29/2022]
|