1
|
Pang JJ. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. Int J Mol Sci 2024; 25:4877. [PMID: 38732096 PMCID: PMC11084373 DOI: 10.3390/ijms25094877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Schilardi G, Kleinlogel S. Two Functional Classes of Rod Bipolar Cells in the Healthy and Degenerated Optogenetically Treated Murine Retina. Front Cell Neurosci 2022; 15:809531. [PMID: 35095426 PMCID: PMC8793500 DOI: 10.3389/fncel.2021.809531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Bipolar cells have become successful targets for optogenetic gene therapies that restore vision after photoreceptor degeneration. However, degeneration was shown to cause changes in neuronal connectivity and protein expression, which may impact the quality of synthetically restored signaling. Further, the expression of an optogenetic protein may alter passive membrane properties of bipolar cells affecting signal propagation. We here investigated the passive membrane properties of rod bipolar cells in three different systems, the healthy retina, the degenerated retina, and the degenerated retina expressing the optogenetic actuator Opto-mGluR6. We found that, based on the shape of their current-voltage relations, rod bipolar cells in healthy and degenerated retinas form two clear functional groups (type 1 and type 2 cells). Depolarizing the membrane potential changed recorded current-voltage curves from type 1 to type 2, confirming a single cell identity with two functional states. Expression of Opto-mGluR6 did not alter the passive properties of the rod bipolar cell. With progressing degeneration, dominant outward rectifying currents recorded in type 2 rod bipolar cells decreased significantly. We demonstrate that this is caused by a downregulation of BK channel expression in the degenerated retina. Since this BK conductance will normally recover the membrane potential after RBCs are excited by open TRPM1 channels, a loss in BK will decrease high-pass filtering at the rod bipolar cell level. A better understanding of the changes of bipolar cell physiology during retinal degeneration may pave the way to optimize future treatment strategies of blindness.
Collapse
|
3
|
Ahn J, Phan HL, Cha S, Koo KI, Yoo Y, Goo YS. Synchrony of Spontaneous Burst Firing between Retinal Ganglion Cells Across Species. Exp Neurobiol 2020; 29:285-299. [PMID: 32921641 PMCID: PMC7492847 DOI: 10.5607/en20025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Huu Lam Phan
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
4
|
Zhong YS, Wang J, Liu WM, Zhu YH. Potassium ion channels in retinal ganglion cells (review). Mol Med Rep 2013; 8:311-9. [PMID: 23732984 DOI: 10.3892/mmr.2013.1508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/22/2013] [Indexed: 11/06/2022] Open
Abstract
Retinal ganglion cells (RGCs) consolidate visual processing and constitute the last step prior to the transmission of signals to higher brain centers. RGC death is a major cause of visual impairment in optic neuropathies, including glaucoma, age‑related macular degeneration, diabetic retinopathy, uveoretinitis and vitreoretinopathy. Discharge patterns of RGCs are primarily determined by the presence of ion channels. As the most diverse group of ion channels, potassium (K+) channels play key roles in modulating the electrical properties of RGCs. Biochemical, molecular and pharmacological studies have identified a number of K+ channels in RGCs, including inwardly rectifying K+ (Kir), ATP‑sensitive K+ (KATP), tandem‑pore domain K+ (TASK), voltage‑gated K+ (Kv), ether‑à‑go‑go (Eag) and Ca2+‑activated K+ (KCa) channels. Kir channels are important in the maintenance of the resting membrane potential and controlling RGC excitability. KATP channels are involved in RGC survival and neuroprotection. TASK channels are hypothesized to contribute to the regulation of resting membrane potentials and firing patterns of RGCs. Kv channels are important regulators of cellular excitability, functioning to modulate the amplitude, duration and frequency of action potentials and subthreshold depolarizations, and are also important in RGC development and protection. Eag channels may contribute to dendritic repolarization during excitatory postsynaptic potentials and to the attenuation of the back propagation of action potentials. KCa channels have been observed to contribute to repetitive firing in RGCs. Considering these important roles of K+ channels in RGCs, the study of K+ channels may be beneficial in elucidating the pathophysiology of RGCs and exploring novel RGC protection strategies.
Collapse
Affiliation(s)
- Yi-Sheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | | | |
Collapse
|
5
|
Yang J, Pahng J, Wang GY. Dopamine modulates the off pathway in light-adapted mouse retina. J Neurosci Res 2012; 91:138-50. [PMID: 23023788 DOI: 10.1002/jnr.23137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 11/10/2022]
Abstract
DL-2-Amino-4-phosphonobutyric acid (APB) is often used as a tool to block On pathways in studies of interactions between On and Off pathways in retinas. APB is an agonist of mGluR6 receptors and hyperpolarizes the On cone bipolar cells and rod bipolar cells. How APB affects Off responses of retinal ganglion cells (RGCs) in mouse retinas under dark and light adaptation is not clear. The light-evoked excitatory postsynaptic currents (light-evoked EPSCs) from Off and On-Off RGCs cells were recorded using whole-cell patch-clamp recording to assess how APB affects Off responses (light-evoked Off EPSCs) of RGCs in dark- and light-adapted mouse retinas. We found that APB differentially affected Off responses of RGCs in dark- and light-adapted mouse retinas. Under dark adaptation, while the APB-sensitive Off responses were blocked, APB increased the remaining Off responses (mainly from the secondary rod Off pathways) via removal of inhibition from On pathways to Off pathways. Under light adaptation, APB decreased Off responses. Glycinergic and GABAergic antagonists did not prevent the APB-induced reduction of Off responses of RGCs; however, a dopaminergic type 1 receptor (D(1)) blocker (SCH 23390) and a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker (ZD 7288) prevented the APB-induced reduction of Off responses of RGCs under light adaptation. The results indicated afunctional circuit: On cone bipolar cells to Off cone bipolar cells via D(1) receptors and HCN channels.
Collapse
Affiliation(s)
- Jinnan Yang
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
6
|
BK channels mediate pathway-specific modulation of visual signals in the in vivo mouse retina. J Neurosci 2012; 32:4861-6. [PMID: 22492042 DOI: 10.1523/jneurosci.4654-11.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The modulatory role of large-conductance Ca(2+)-activated K(+) (BK) channels in the nervous system has been extensively studied. In the retina, it has been shown that BK channels play a pivotal role in modulating feedback from A17 amacrine cells to rod bipolar cells (RBCs). Here, we used electroretinography to examine the functional role of BK channels for rod and cone vision in the retina in vivo using a genetically engineered mouse lacking functional BK channels (Bk(-/-)). Under dark-adapted and light-adapted conditions, the lack of BK channels had no effect on photoreceptor activity, suggesting that these ion channels do not modulate photoreceptor responses. At the bipolar cell level, the ERG signals attributed to RBCs in Bk(-/-) mice were not different from those in wild-type mice at low scotopic stimulus intensities. However, at high scotopic and low mesopic stimulus intensities, close to RBC saturation, a significant reduction of ERG signals reflecting RBC activity was present in the Bk(-/-) retina. At higher mesopic stimulus intensities activating both RBCs and cone bipolar cells (CBCs), no difference in ERG signals between Bk(-/-) and wild-type mice was found. In photopic stimulus paradigms, activity of ON- and OFF-CBCs in Bk(-/-) and wild-type retinae was indistinguishable. These findings demonstrate that BK channels modulate visual responses in vivo at the bipolar cell level at intermediate stimulus conditions.
Collapse
|
7
|
Yang J, Nemargut JP, Wang GY. The roles of ionotropic glutamate receptors along the On and Off signaling pathways in the light-adapted mouse retina. Brain Res 2011; 1390:70-9. [DOI: 10.1016/j.brainres.2011.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/28/2011] [Accepted: 03/06/2011] [Indexed: 10/18/2022]
|
8
|
Nemargut JP, Wang GY. Inhibition of nitric oxide synthase desensitizes retinal ganglion cells to light by diminishing their excitatory synaptic currents under light adaptation. Vision Res 2009; 49:2936-47. [PMID: 19772868 DOI: 10.1016/j.visres.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The effect of inhibiting nitric oxide synthase (NOS) on the visual responses of mouse retinal ganglion cells (RGCs) was studied under light adaptation by using patch-clamp recordings. The results demonstrated that NOS inhibitor, l-NAME, reduced the sensitivity of RGCs to light under light adaptation at different ambient light conditions. These observations were seen in all cells that recordings were made from. l-NAME diminished the excitatory synaptic currents (EPSCs), rather than increasing the inhibitory synaptic currents, of RGCs to reduce the sensitivity of RGCs to light. Cones may be the sites that l-NAME acted to diminish the EPSCs of RGCs.
Collapse
Affiliation(s)
- Joseph P Nemargut
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, United States
| | | |
Collapse
|
9
|
Bai X, Zhu J, Yang J, Savoie BT, Wang GY. Mechanisms that limit the light stimulus frequency following through the DL-2-amino-4-phosphonobutyric acid sensitive and insensitive rod Off-pathways. Neuroscience 2009; 162:184-94. [PMID: 19406212 DOI: 10.1016/j.neuroscience.2009.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/24/2009] [Accepted: 04/24/2009] [Indexed: 11/18/2022]
Abstract
In the retina, rod signal pathways process scotopic visual information. Light decrements are mediated by two distinct groups of rod pathways in the dark-adapted retina that can be differentiated on the basis of their sensitivity to the glutamate agonist dl-2-amino-4-phosphonobutyric acid (APB). We have found that the APB sensitive and insensitive rod Off-pathways signal different light decrement information: the APB sensitive rod Off-pathway conveys slow and low frequency light signals, whereas the APB insensitive rod Off-pathways mediate fast and high frequency light signals [Wang GY (2006) Unique functional properties of the APB sensitive and insensitive rod pathways signaling light decrements in mouse retinal ganglion cells. Vis Neurosci 23:127-135]. However, the mechanisms which limit the frequency following through the APB sensitive and insensitive rod Off-pathways remain unknown. In the current study, whole-cell patch-clamp recordings were made from ganglion cells in dark and light adapted mouse retina to identify the mechanisms that limit the frequency following through the APB sensitive and insensitive rod Off-pathways. The results showed that the sites from AII amacrine cells to Off cone bipolar cells are the major mechanisms that limit the frequency following through the APB sensitive rod Off-pathway. In the APB insensitive rod Off-pathways, rods themselves limited the frequency following through these pathways. Moreover, ganglion cells were able to follow higher frequencies under photopic conditions than under scotopic conditions. The Off responses followed lower frequencies than On responses under photopic conditions. This finding was observed in cells that yielded On or Off responses only as well as in On-Off cells.
Collapse
Affiliation(s)
- X Bai
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, 1430 Tulane Avenue, SL-49, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|