1
|
Schmittwilken L, Wichmann FA, Maertens M. Standard models of spatial vision mispredict edge sensitivity at low spatial frequencies. Vision Res 2024; 222:108450. [PMID: 38964164 DOI: 10.1016/j.visres.2024.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
One well-established characteristic of early visual processing is the contrast sensitivity function (CSF) which describes how sensitivity varies with the spatial frequency (SF) content of the visual input. The CSF prompted the development of a now standard model of spatial vision. It represents the visual input by activity in orientation- and SF selective channels which are nonlinearly recombined to predict a perceptual decision. The standard spatial vision model has been extensively tested with sinusoidal gratings at low contrast because their narrow SF spectra isolate the underlying SF selective mechanisms. It is less studied how well these mechanisms account for sensitivity to more behaviourally relevant stimuli such as sharp edges at high contrast (i.e. object boundaries) which abound in the natural environment and have broader SF spectra. Here, we probe sensitivity to edges (2-AFC, edge localization) in the presence of broadband and narrowband noises. We use Cornsweet luminance profiles with peak frequencies at 0.5, 3 and 9 cpd as edge stimuli. To test how well mechanisms underlying sinusoidal contrast sensitivity can account for edge sensitivity, we implement a single- and a multi-scale model building upon standard spatial vision model components. Both models account for most of the data but also systematically deviate in their predictions, particularly in the presence of pink noise and for the lowest SF edge. These deviations might indicate a transition from contrast- to luminance-based detection at low SFs. Alternatively, they might point to a missing component in current spatial vision models.
Collapse
Affiliation(s)
- Lynn Schmittwilken
- Science of Intelligence and Computational Psychology, Electrical Engineering and Computer Science Technische Universität Berlin, Berlin, Germany.
| | - Felix A Wichmann
- Neural Information Processing, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Marianne Maertens
- Science of Intelligence and Computational Psychology, Electrical Engineering and Computer Science Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Abstract
Human vision relies on mechanisms that respond to luminance edges in space and time. Most edge models use orientation-selective mechanisms on multiple spatial scales and operate on static inputs assuming that edge processing occurs within a single fixational instance. Recent studies, however, demonstrate functionally relevant temporal modulations of the sensory input due to fixational eye movements. Here we propose a spatiotemporal model of human edge detection that combines elements of spatial and active vision. The model augments a spatial vision model by temporal filtering and shifts the input images over time, mimicking an active sampling scheme via fixational eye movements. The first model test was White's illusion, a lightness effect that has been shown to depend on edges. The model reproduced the spatial-frequency-specific interference with the edges by superimposing narrowband noise (1–5 cpd), similar to the psychophysical interference observed in White's effect. Second, we compare the model's edge detection performance in natural images in the presence and absence of Gaussian white noise with human-labeled contours for the same (noise-free) images. Notably, the model detects edges robustly against noise in both test cases without relying on orientation-selective processes. Eliminating model components, we demonstrate the relevance of multiscale spatiotemporal filtering and scale-specific normalization for edge detection. The proposed model facilitates efficient edge detection in (artificial) vision systems and challenges the notion that orientation-selective mechanisms are required for edge detection.
Collapse
Affiliation(s)
- Lynn Schmittwilken
- Science of Intelligence and Computational Psychology, Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany.,
| | - Marianne Maertens
- Science of Intelligence and Computational Psychology, Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany.,
| |
Collapse
|
3
|
Lerer A, Supèr H, Keil MS. Dynamic decorrelation as a unifying principle for explaining a broad range of brightness phenomena. PLoS Comput Biol 2021; 17:e1007907. [PMID: 33901165 PMCID: PMC8102013 DOI: 10.1371/journal.pcbi.1007907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
The visual system is highly sensitive to spatial context for encoding luminance patterns. Context sensitivity inspired the proposal of many neural mechanisms for explaining the perception of luminance (brightness). Here we propose a novel computational model for estimating the brightness of many visual illusions. We hypothesize that many aspects of brightness can be explained by a dynamic filtering process that reduces the redundancy in edge representations on the one hand, while non-redundant activity is enhanced on the other. The dynamic filter is learned for each input image and implements context sensitivity. Dynamic filtering is applied to the responses of (model) complex cells in order to build a gain control map. The gain control map then acts on simple cell responses before they are used to create a brightness map via activity propagation. Our approach is successful in predicting many challenging visual illusions, including contrast effects, assimilation, and reverse contrast with the same set of model parameters.
Collapse
Affiliation(s)
- Alejandro Lerer
- Departament de Cognició, Desenvolupament i Psicologia de l’Educació, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Hans Supèr
- Departament de Cognició, Desenvolupament i Psicologia de l’Educació, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
- Catalan Institute for Advanced Studies (ICREA), Barcelona, Spain
| | - Matthias S. Keil
- Departament de Cognició, Desenvolupament i Psicologia de l’Educació, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Salmela V, Socada L, Söderholm J, Heikkilä R, Lahti J, Ekelund J, Isometsä E. Reduced visual contrast suppression during major depressive episodes. J Psychiatry Neurosci 2021; 46:E222-E231. [PMID: 33703869 PMCID: PMC8061742 DOI: 10.1503/jpn.200091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Previous studies have suggested that processing of visual contrast information could be altered in major depressive disorder. To clarify the changes at different levels of the visual hierarchy, we behaviourally measured contrast perception in 2 centre-surround conditions, assessing retinal and cortical processing. METHODS As part of a prospective cohort study, our sample consisted of controls (n = 29; 21 female) and patients with unipolar depression, bipolar disorder and borderline personality disorder who had baseline major depressive episodes (n = 111; 74 female). In a brightness induction test that assessed retinal processing, participants compared the perceived luminance of uniform patches (presented on a computer screen) as the luminance of the backgrounds was varied. In a contrast suppression test that assessed cortical processing, participants compared the perceived contrast of gratings, which were presented with collinearly or orthogonally oriented backgrounds. RESULTS Brightness induction was similar for patients with major depressive episodes and controls (p = 0.60, d = 0.115, Bayes factor = 3.9), but contrast suppression was significantly lower for patients than for controls (p < 0.006, d = 0.663, Bayes factor = 35.2). We observed no statistically significant associations between contrast suppression and age, sex, or medication or diagnostic subgroup. At follow-up (n = 74), we observed some normalization of contrast perception. LIMITATIONS We assessed contrast perception using behavioural tests instead of electrophysiology. CONCLUSION The reduced contrast suppression we observed may have been caused by decreased retinal feedforward or cortical feedback signals. Because we observed intact brightness induction, our results suggest normal retinal but altered cortical processing of visual contrast during a major depressive episode. This alteration is likely to be present in multiple types of depression and to partially normalize upon remission.
Collapse
Affiliation(s)
- Viljami Salmela
- From the Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland (Salmela, Lahti); and the Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland (Socada, Söderholm, Heikkilä, Ekelund, Isometsä)
| | - Lumikukka Socada
- From the Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland (Salmela, Lahti); and the Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland (Socada, Söderholm, Heikkilä, Ekelund, Isometsä)
| | - John Söderholm
- From the Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland (Salmela, Lahti); and the Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland (Socada, Söderholm, Heikkilä, Ekelund, Isometsä)
| | - Roope Heikkilä
- From the Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland (Salmela, Lahti); and the Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland (Socada, Söderholm, Heikkilä, Ekelund, Isometsä)
| | - Jari Lahti
- From the Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland (Salmela, Lahti); and the Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland (Socada, Söderholm, Heikkilä, Ekelund, Isometsä)
| | - Jesper Ekelund
- From the Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland (Salmela, Lahti); and the Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland (Socada, Söderholm, Heikkilä, Ekelund, Isometsä)
| | - Erkki Isometsä
- From the Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland (Salmela, Lahti); and the Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland (Socada, Söderholm, Heikkilä, Ekelund, Isometsä)
| |
Collapse
|
5
|
Vinke LN, Yazdanbakhsh A. Lightness induction enhancements and limitations at low frequency modulations across a variety of stimulus contexts. PeerJ 2020; 8:e8918. [PMID: 32351782 PMCID: PMC7183748 DOI: 10.7717/peerj.8918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/16/2020] [Indexed: 11/20/2022] Open
Abstract
Lightness illusions are often studied under static viewing conditions with figures varying in geometric design, containing different types of perceptual grouping and figure-ground cues. A few studies have explored the perception of lightness induction while modulating lightness illusions continuously in time, where changes in perceived lightness are often linked to the temporal modulation frequency, up to around 2–4 Hz. These findings support the concept of a cut-off frequency for lightness induction. However, another critical change (enhancement) in the magnitude of perceived lightness during slower temporal modulation conditions has not been addressed in previous temporal modulation studies. Moreover, it remains unclear whether this critical change applies to a variety of lightness illusion stimuli, and the degree to which different stimulus configurations can demonstrate enhanced lightness induction in low modulation frequencies. Therefore, we measured lightness induction strength by having participants cancel out any perceived modulation in lightness detected over time within a central target region, while the surrounding context, which ultimately drives the lightness illusion, was viewed in a static state or modulated continuously in time over a low frequency range (0.25–2 Hz). In general, lightness induction decreased as temporal modulation frequency was increased, with the strongest perceived lightness induction occurring at lower modulation frequencies for visual illusions with strong grouping and figure-ground cues. When compared to static viewing conditions, we found that slow continuous surround modulation induces a strong and significant increase in perceived lightness for multiple types of lightness induction stimuli. Stimuli with perceptually ambiguous grouping and figure-ground cues showed weaker effects of slow modulation lightness enhancement. Our results demonstrate that, in addition to the existence of a cut-off frequency, an additional critical temporal modulation frequency of lightness induction exists (0.25–0.5 Hz), which instead maximally enhances lightness induction and seems to be contingent upon the prevalence of figure-ground and grouping organization.
Collapse
Affiliation(s)
- Louis Nicholas Vinke
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience (CSN), Boston University, Boston, MA, USA
| | - Arash Yazdanbakhsh
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience (CSN), Boston University, Boston, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
6
|
Stimulus duration has little effect on auditory, visual and audiovisual temporal order judgement. Exp Brain Res 2018; 236:1273-1282. [DOI: 10.1007/s00221-018-5218-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
|
7
|
Blakeslee B, Padmanabhan G, McCourt ME. Dissecting the influence of the collinear and flanking bars in White's effect. Vision Res 2016; 127:11-17. [PMID: 27425384 DOI: 10.1016/j.visres.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 11/18/2022]
Abstract
In White's effect equiluminant test patches placed on the black and white bars of a square-wave grating appear different in brightness. The illusion has generated intense interest because the direction of the brightness effect does not correlate with the amount of black or white border in contact with the test patch, or in its general vicinity. Therefore, unlike brightness induction effects such as simultaneous contrast, White's effect is not consistent with explanations based on contrast or assimilation that depend solely on the relative amounts of black and white surrounding the test patches. We independently manipulated the luminance of the collinear and flanking bars to investigate their influence on test patch matching luminance (brightness). The inducing grating was a 0.5c/d square-wave and test patches measured 1.0° in width and either 0.5° or 3.0° in height. Test patches measuring 0.5° in height had more extensive contact with the collinear bars and test patches measuring 3.0° in height had more extensive contact with the flanking bars. The luminance of the collinear (or flanking) bars assumed twenty values from 3.2 to 124.8cd/m(2), while the luminance of the flanking (or collinear) bars remained white (124.8cd/m(2)) or black (3.2cd/m(2)). Under these conditions the influence of the collinear and flanking bars was found to be purely in the direction of contrast. The effect was dominated by contrast from the collinear bars (which results in White's effect), however, the influence of the flanking bars was also in the contrast direction. The data elucidate the luminance relationships between the collinear and flanking bars which produce the behavior associated with White's effect as well as that associated with "the inverted White effect" which is akin to simultaneous contrast.
Collapse
Affiliation(s)
- Barbara Blakeslee
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND 58105-5075, United States.
| | - Ganesh Padmanabhan
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND 58105-5075, United States
| | - Mark E McCourt
- Center for Visual and Cognitive Neuroscience, Department of Psychology, North Dakota State University, Fargo, ND 58105-5075, United States
| |
Collapse
|
8
|
Betz T, Shapley R, Wichmann FA, Maertens M. Testing the role of luminance edges in White's illusion with contour adaptation. J Vis 2015; 15:14. [PMID: 26305862 PMCID: PMC6897287 DOI: 10.1167/15.11.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/07/2015] [Indexed: 11/24/2022] Open
Abstract
White's illusion is the perceptual effect that two equiluminant gray patches superimposed on a black-and-white square-wave grating appear different in lightness: A test patch placed on a dark stripe of the grating looks lighter than one placed on a light stripe. Although the effect does not depend on the aspect ratio of the test patches, and thus on the amount of border that is shared with either the dark or the light stripe, the context of each patch must, in a yet to be specified way, influence their lightness. We employed a contour adaptation paradigm (Anstis, 2013) to test the contribution of each of the test patches' edges to the perceived lightness of the test patches. We found that adapting to the edges that are oriented parallel to the grating slightly increased the lightness illusion, whereas adapting to the orthogonal edges abolished, or for some observers even reversed, the lightness illusion. We implemented a temporal adaptation mechanism in three spatial filtering models of lightness perception, and show that the models cannot account for the observed adaptation effects. We conclude that White's illusion is largely determined by edge contrast across the edge orthogonal to the grating, whereas the parallel edge has little or no influence. We suggest mechanisms that could explain this asymmetry.
Collapse
|
9
|
Betz T, Shapley R, Wichmann FA, Maertens M. Noise masking of White's illusion exposes the weakness of current spatial filtering models of lightness perception. J Vis 2015; 15:1. [PMID: 26426914 PMCID: PMC6894438 DOI: 10.1167/15.14.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/23/2015] [Indexed: 11/24/2022] Open
Abstract
Spatial filtering models are currently a widely accepted mechanistic account of human lightness perception. Their popularity can be ascribed to two reasons: They correctly predict how human observers perceive a variety of lightness illusions, and the processing steps involved in the models bear an apparent resemblance with known physiological mechanisms at early stages of visual processing. Here, we tested the adequacy of these models by probing their response to stimuli that have been modified by adding narrowband noise. Psychophysically, it has been shown that noise in the range of one to five cycles per degree (cpd) can drastically reduce the strength of some lightness phenomena, while noise outside this range has little or no effect on perceived lightness. Choosing White's illusion (White, 1979) as a test case, we replicated and extended the psychophysical results, and found that none of the spatial filtering models tested was able to reproduce the spatial frequency specific effect of narrowband noise. We discuss the reasons for failure for each model individually, but we argue that the failure is indicative of the general inadequacy of this class of spatial filtering models. Given the present evidence we do not believe that spatial filtering models capture the mechanisms that are responsible for producing many of the lightness phenomena observed in human perception. Instead we think that our findings support the idea that low-level contributions to perceived lightness are primarily determined by the luminance contrast at surface boundaries.
Collapse
|