1
|
de Deus M, Petit C, Schwitzer T. ElectroRetinoGraphy toward an exploration of the therapeutic potential of antidepressants in patients with major depressive disorder: A scoping review of the literature. Neurosci Biobehav Rev 2024; 164:105833. [PMID: 39089420 DOI: 10.1016/j.neubiorev.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/07/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Major Depressive Disorder (MDD) is characterized by at least one major depressive episode. It requires medical attention typically involving the prescription of antidepressants. Remission in MDD patients is often difficult to achieve because of the limited effectiveness of these drugs. Nowadays, numerous patients undergo various antidepressant treatments, with subjective changes in their personal experiences being regularly monitored. Therefore, it is essential to find clinical and objective tools that offer a more tailored approach to antidepressant selection. The neurochemistry of the retina being similar to the brain, one promising approach would be to use ElectroRetinoGraphy (ERG) measurements on MDD patients requiring antidepressant treatment. Thus, the aim of this scoping review is to highlight effects of different classes of antidepressants on retinal function evaluated by full-field ERG (ffERG), Pattern ERG (PERG) and multifocal ERG (mfERG) waveforms in MDD patients. These ERG measurements could serve as pivotal indicators in defining patient profiles, facilitating a more objective and personalized approach to therapeutic interventions, thereby advancing precision psychiatry.
Collapse
Affiliation(s)
- Marie de Deus
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adulte et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, 1, rue du Docteur Archambault, Laxou 54 520, France
| | - Charlotte Petit
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adulte et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, 1, rue du Docteur Archambault, Laxou 54 520, France
| | - Thomas Schwitzer
- Pôle Hospitalo-Universitaire de Psychiatrie d'Adulte et d'Addictologie du Grand Nancy, Centre Psychothérapique de Nancy, 1, rue du Docteur Archambault, Laxou 54 520, France.
| |
Collapse
|
2
|
Popova E, Kupenova P. Effects of HCN channel blockade on the intensity-response function of electroretinographic ON and OFF responses in dark adapted frogs. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Purinergic modulation of frog electroretinographic responses: The role of the ionotropic receptor P2X7. Vis Neurosci 2018; 34:E015. [PMID: 28965497 DOI: 10.1017/s0952523817000128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The contribution of the purinergic receptors P2X7 (P2X7Rs) to the electroretinographic (ERG) responses was studied by testing the effects of the selective P2X7R antagonist A438079 and the selective P2X7R agonist Bz-ATP on the electroretinograms obtained in perfused frog (Rana ridibunda) eyecup preparations under a variety of stimulation conditions. The P2X7R blockade by 200 µM A438079 diminished the amplitude of the photoreceptor components: the a-wave and the pharmacologically isolated mass receptor potential. In the pure rod-driven and pure cone-driven responses, the amplitude of the postreceptoral ON (b-wave) and OFF (d-wave) components was also diminished. The OFF responses were affected to a greater extent compared to the ON responses. In the mixed rod- and cone-driven responses, obtained in the mesopic intensity range, the b-wave amplitude was increased, while the d-wave amplitude was decreased. The amplitude of the oscillatory potentials was diminished. The relative amplitude changes produced by the P2X7R blockade were greater in the dark-adapted compared to the light-adapted eyes. The application of 100 µM Bz-ATP produced small effects opposite to those of the antagonist, while a prolonged (>20 min) treatment with 1 mM Bz-ATP resulted in a significant amplitude reduction or even abolishment of b- and d-waves. Our results show that endogenous ATP through its P2X7Rs exerts significant, mostly potentiating effects on the ERG photoreceptor and postreceptoral responses. There is a clear ON/OFF asymmetry of the effects on the ERG postreceptoral responses favoring OFF responses: they are always strongly potentiated, while the ON responses are either less potentiated (in the rod-driven and most of the cone-driven responses) or even inhibited (in the mixed rod- and cone-driven responses). The overstimulation of P2X7Rs can produce acute pathological changes, that is, a decrease or abolishment of the ERG responses.
Collapse
|
4
|
Popova E, Kupenova P. Interaction between the serotoninergic and GABAergic systems in frog retina as revealed by electroretinogram. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Popova E, Kostov M, Kupenova P. Effects of dopamine D 1 receptor blockade on the ERG b- and d-waves during blockade of ionotropic GABA receptors. EYE AND VISION 2016; 3:32. [PMID: 27981058 PMCID: PMC5142325 DOI: 10.1186/s40662-016-0064-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/24/2016] [Indexed: 11/16/2022]
Abstract
Background Some data indicate that the dopaminergic and GABAergic systems interact in the vertebrate retina, but the type of interactions is not well understood. Methods In this study we investigated the effect of dopamine D1 receptor blockade by 75 μM SCH 23390 on the electroretinographic ON (b-wave) and OFF (d-wave) responses in intact frog eyecup preparations and in eyecups where the ionotropic GABA receptors were blocked by 50 μM picrotoxin. Student’s t-test, One-way repeated measures ANOVA with Bonferroni post-hoc test and Two-way ANOVA were used for statistical evaluation of the data. Results We found that SCH 23390 alone significantly enhanced the amplitude of the b- and d-waves without altering their latency. The effect developed rapidly and was fully expressed within 8-11 min after the blocker application. Picrotoxin alone also markedly enhanced the amplitude of the ERG ON and OFF responses and increased their latency significantly. The effect was fully expressed within 25-27 min after picrotoxin application and remained very stable in the next 20 min. The effects of SCH 23390 and picrotoxin are similar to that reported in our previous studies. When SCH 23390 was applied on the background of the fully developed picrotoxin effect, it diminished the amplitude of the b- and d-waves in comparison to the corresponding values obtained during application of picrotoxin alone. Conclusion Our results demonstrate that the enhancing effect of D1 receptor blockade on the amplitude of the ERG b- and d-waves is not evident during the ionotropic GABA receptor blockade, indicating an interaction between these neurotransmitter systems in the frog retina. We propose that the inhibitory effect of endogenous dopamine mediated by D1 receptors on the ERG ON and OFF responses in the frog retina may be due to the dopamine-evoked GABA release. Electronic supplementary material The online version of this article (doi:10.1186/s40662-016-0064-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elka Popova
- Department of Physiology, Medical University of Sofia, Sofia, Bulgaria
| | - Momchil Kostov
- Department of Physiology, Medical University of Sofia, Sofia, Bulgaria
| | - Petia Kupenova
- Department of Physiology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
6
|
Deming JD, Pak JS, Brown BM, Kim MK, Aung MH, Eom YS, Shin JA, Lee EJ, Pardue MT, Craft CM. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health. Invest Ophthalmol Vis Sci 2015; 56:5407-16. [PMID: 26284544 DOI: 10.1167/iovs.15-16647] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. METHODS A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4-/-) compared with age-matched control, wild-type mice. RESULTS When 2-month-old Arr4-/- mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4-/- mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4-/- mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. CONCLUSIONS Our study demonstrates that Arr4-/- mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy.
Collapse
Affiliation(s)
- Janise D Deming
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Joseph S Pak
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Bruce M Brown
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States
| | - Moon K Kim
- Rehabilitation Research & Development Center of Excellence, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Moe H Aung
- Neuroscience/Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Yun Sung Eom
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 4Dornsife College of Letters, Arts and Sciences, Univers
| | - Jung-A Shin
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 5Department of Anatomy, School of Medicine, Ewha Womans
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 6Department of Biomedical Engineering, University of Sou
| | - Machelle T Pardue
- Rehabilitation Research & Development Center of Excellence, Atlanta VA Medical Center, Decatur, Georgia, United States 3Neuroscience/Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Cheryl Mae Craft
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States 7Department of Cell & Neurobiology, Keck School of Medic
| |
Collapse
|
7
|
Bonilha VL, Bell BA, Rayborn ME, Yang X, Kaul C, Grossman GH, Samuels IS, Hollyfield JG, Xie C, Cai H, Shadrach KG. Loss of DJ-1 elicits retinal abnormalities, visual dysfunction, and increased oxidative stress in mice. Exp Eye Res 2015. [PMID: 26215528 DOI: 10.1016/j.exer.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DJ-1/PARK7 mutations or deletions cause autosomal recessive early onset Parkinson's disease (PD). Thus, DJ-1 protein has been extensively studied in brain and neurons. PD patients display visual symptoms; however, the visual symptoms specifically attributed to PD patients carrying DJ-1/PARK7 mutations are not known. In this study, we analyzed the structure and physiology of retinas of 3- and 6-month-old DJ-1 knockout (KO) mice to determine how loss of function of DJ-1 specifically contributes to the phenotypes observed in PD patients. As compared to controls, the DJ-1 KO mice displayed an increase in the amplitude of the scotopic ERG b-wave and cone ERG, while the amplitude of a subset of the dc-ERG components was decreased. The main structural changes in the DJ-1 KO retinas were found in the outer plexiform layer (OPL), photoreceptors and retinal pigment epithelium (RPE), which were observed at 3 months and progressively increased at 6 months. RPE thinning and structural changes within the OPL were observed in the retinas in DJ-1 KO mice. DJ-1 KO retinas also exhibited disorganized outer segments, central decrease in red/green cone opsin staining, decreased labeling of ezrin, broader distribution of ribeye labeling, decreased tyrosine hydroxylase in dopaminergic neurons, and increased 7,8-dihydro-8-oxoguanine-labeled DNA oxidation. Accelerated outer retinal atrophy was observed in DJ-1 KO mice after selective oxidative damage induced by a single tail vein injection of NaIO3, exposing increased susceptibility to oxidative stress. Our data indicate that DJ-1-deficient retinas exhibit signs of morphological abnormalities and physiological dysfunction in association with increased oxidative stress. Degeneration of RPE cells in association with oxidative stress is a key hallmark of age-related macular degeneration (AMD). Therefore, in addition to detailing the visual defects that occur as a result of the absence of DJ-1, our data is also relevant to AMD pathogenesis.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mary E Rayborn
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoping Yang
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charlie Kaul
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gregory H Grossman
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ivy S Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Joe G Hollyfield
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA; Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chengsong Xie
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Karen G Shadrach
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Smith BJ, Côté PD, Tremblay F. D1 Dopamine receptors modulate cone ON bipolar cell Nav channels to control daily rhythms in photopic vision. Chronobiol Int 2014; 32:48-58. [DOI: 10.3109/07420528.2014.951054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Popova E. Effects of picrotoxin on light adapted frog electroretinogram are not due entirely to its action in proximal retina. Vision Res 2014; 101:138-50. [PMID: 24999030 DOI: 10.1016/j.visres.2014.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
In order to evaluate the site of action of picrotoxin (antagonist of ionotropic GABA receptors) on the electroretinographic (ERG) b- and d-waves, in this study we compared its effects on the intensity-response function of the ERG waves in intact light adapted frog eyecup preparations with its effects in eyecups, where the activity of proximal neurons was blocked by 1 mMN-methyl-d-aspartate (MNDA). Picrotoxin markedly enhanced the b- and d-wave amplitude and slowed the time course of the responses at all stimulus intensities in the intact eyecups. Perfusion with NMDA alone caused significant enhancement of the b-wave amplitude and diminution of the d-wave amplitude without altering their time course in the entire intensity range. When picrotoxin was applied in combination with NMDA, an enhancement of the b-wave amplitude and slowing of its time course were observed at all stimulus intensities. The increase of the b-wave amplitude was significantly higher than that seen in NMDA group. Combined application of picrotoxin and NMDA caused an enhancement of the d-wave amplitude at the lower stimulus intensities and its diminution at the higher ones, while the d-wave time course was delayed over the entire intensity range. The results obtained indicate that a part of picrotoxin effects on the amplitude and time course of the photopic ERG b- and d-waves are due to its action in the distal frog retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria.
| |
Collapse
|
10
|
Xiao L, Zhang PM, Gong HQ, Liang PJ. Effects of dopamine on response properties of ON-OFF RGCs in encoding stimulus durations. Front Neural Circuits 2014; 8:72. [PMID: 25071453 PMCID: PMC4074994 DOI: 10.3389/fncir.2014.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/12/2014] [Indexed: 11/13/2022] Open
Abstract
Single retinal ganglion cell's (RGCs) response properties, such as spike count and response latency, are known to encode some features of visual stimuli. On the other hand, neuronal response can be modulated by dopamine (DA), an important endogenous neuromodulator in the retina. In the present study, we investigated the effects of DA on the spike count and the response latency of bullfrog ON-OFF RGCs during exposure to different stimulus durations. We found that neuronal spike count and response latency were both changed with stimulus durations, and exogenous DA (10 μM) obviously attenuated the stimulus-duration-dependent response latency change. Information analysis showed that the information about light ON duration was mainly carried by the OFF response and vice versa, and the stimulation information was carried by both spike count and response latency. However, during DA application, the information carried by the response latency was greatly decreased, which suggests that dopaminergic pathway is involved in modulating the role of response latency in encoding the information about stimulus durations.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Pu-Ming Zhang
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Hai-Qing Gong
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Pei-Ji Liang
- Department of Biomedical Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
11
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
12
|
He Q, Xu HP, Wang P, Tian N. Dopamine D1 receptors regulate the light dependent development of retinal synaptic responses. PLoS One 2013; 8:e79625. [PMID: 24260267 PMCID: PMC3834122 DOI: 10.1371/journal.pone.0079625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/02/2013] [Indexed: 12/30/2022] Open
Abstract
Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1-/- mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1-/- mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1-/- mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1-/- mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1-/- mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina.
Collapse
Affiliation(s)
- Quanhua He
- College of Pharmacy, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Hong-ping Xu
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
13
|
Effects of dopamine receptor blockade on the intensity-response function of electroretinographic b- and d-waves in light-adapted eyes. J Neural Transm (Vienna) 2013; 121:233-44. [PMID: 24150276 DOI: 10.1007/s00702-013-1103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
The effects of dopamine receptor blockade by sulpiride (D2-class antagonist) and sulpiride plus SCH 23390 (D1-class antagonist) on the V - log I function of the electroretinographic (ERG) b- and d-waves were investigated in light-adapted frog eyes. Sulpiride significantly decreased the absolute sensitivity of the b- and d-waves. The amplitude of the both waves was diminished over the whole intensity range studied. A similar effect on the b-, but not d-wave amplitude was seen during the perfusion with sulpiride plus SCH 23390. The effect on the d-wave amplitude depended on stimulus intensity. The threshold of the d-wave was not significantly altered. The suprathreshold d-wave amplitude was enhanced at the lower stimulus intensities and remained unchanged at the higher ones. The results obtained indicate that the action of endogenous dopamine on the photopic ERG shows clear ON-OFF asymmetry. Participation of different classes of dopamine receptors is probably responsible for this difference.
Collapse
|
14
|
Popova E, Kupenova P. Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes. Vision Res 2013; 88:22-9. [PMID: 23810982 DOI: 10.1016/j.visres.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/26/2013] [Accepted: 06/15/2013] [Indexed: 01/11/2023]
Abstract
The effects of dopamine receptor blockade by sulpiride (D2-class antagonist) and sulpiride plus SCH 23390 (D1-class antagonist) on the V - log I function of the ERG b- and d-waves were investigated in dark adapted frog eyes. We observed that sulpiride enhanced the amplitude of the suprathreshold b- and d-waves in the lower intensity range, where the responses were mediated by rods, but diminished it in the higher intensity range, where the responses were mediated by cones. A similar effect on the b-, but not d-wave amplitude was seen during the perfusion with sulpiride plus SCH 23390. The d-wave amplitude was enhanced over the whole intensity range with the exception of the highest intensities during the combined D1 and D2 receptor blockade. The results obtained indicate that the endogenous dopamine has an overall inhibitory action on the suprathreshold rod-mediated ON and OFF responses, while its action on the cone-mediated responses shows clear ON-OFF asymmetry. It is excitatory upon the ON responses, but inhibitory upon the OFF responses except for those in the highest intensity range. Participation of different types of dopamine receptors (predominantly D2 for the ON versus D1 for the OFF response) is probably responsible for this difference.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria.
| | | |
Collapse
|