Richard B, Chadnova E, Baker DH. Binocular vision adaptively suppresses delayed monocular signals.
Neuroimage 2018;
172:753-765. [PMID:
29454106 DOI:
10.1016/j.neuroimage.2018.02.021]
[Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
A neutral density filter placed before one eye will produce a dichoptic imbalance in luminance, which attenuates responses to visual stimuli and lags neural signals from retina to cortex in the filtered eye. When stimuli are presented to both the filtered and unfiltered eye (i.e., binocularly), neural responses show little attenuation and no lag compared with their baseline counterpart. This suggests that binocular visual mechanisms must suppress the attenuated and delayed input from the filtered eye; however, the mechanisms involved remain unclear. Here, we used a Steady-State Visual Evoked Potential (SSVEP) technique to measure neural responses to monocularly and binocularly presented stimuli while observers wore an ND filter in front of their dominant eye. These data were well-described by a binocular summation model, which received the sinusoidal contrast modulation of the stimulus as input. We incorporated the influence of the ND filter with an impulse response function, which adjusted the input magnitude and phase in a biophysically plausible manner. The model captured the increase in attenuation and lag of neural signals for stimuli presented to the filtered eye as a function of filter strength, while also generating the filter phase-invariant responses from binocular presentation for EEG and psychophysical data. These results clarify how binocular visual mechanisms-specifically interocular suppression-can suppress the delayed and attenuated signals from the filtered eye and maintain normal neural signals under imbalanced luminance conditions.
Collapse