1
|
Frolov RV. Non-inactivating voltage-activated K+ conductances can increase photoreceptor signaling bandwidth beyond the bandwidth set by phototransduction. PLoS One 2023; 18:e0289466. [PMID: 37527242 PMCID: PMC10393161 DOI: 10.1371/journal.pone.0289466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Evolution produced a large variety of rhabdomeric photoreceptors in the compound eyes of insects. To study effects of morphological and electrophysiological differences on signal generation and modulation, we developed models of the cockroach and blow fly photoreceptors. The cockroach model included wide microvilli, large membrane capacitance and two voltage-activated K+ conductances. The blow fly model included narrow microvilli, small capacitance and two sustained voltage-activated K+ conductances. Our analysis indicated that membrane of even the narrowest microvilli of up to 3 μm long can be measured fully from the soma. Attenuation of microvillar quantum bump (QB)-like signals at the recording site in the soma increased with the signal amplitude in the microvillus, due to the decreasing driving force. However, conductance of the normal-sized QBs can be detected in the soma with minimal attenuation. Next, we investigated how interactions between the sustained voltage-activated K+ and light-induced conductances can shape the frequency response. The models were depolarized by either a current injection or light-induced current (LIC) and probed with inward currents kinetically approximating dark- or light-adapted QBs. By analyzing the resulting voltage impulse responses (IR), we found that: (1) sustained K+ conductance can shorten IRs, expanding the signaling bandwidth beyond that set by phototransduction; (2) voltage-dependencies of changes in IR durations have minima within the physiological voltage response range, depending on the activation kinetics of K+ conductance, the presence or absence of sustained LIC, and the kinetics of the probing current stimulus; and (3) sustained LIC lowers gain of IRs and can exert dissimilar effects on their durations. The first two findings were supported by experiments. It is argued that improvement of membrane response bandwidth by parametric interactions between passive, ligand-gated and voltage-dependent components of the membrane circuit can be a general feature of excitable cells that respond with graded voltage signals.
Collapse
Affiliation(s)
- Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Škorjanc A, Kreft M, Benda J. Stimulator compensation and generation of Gaussian noise stimuli with defined amplitude spectra for studying input–output relations of sensory systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 209:361-372. [PMID: 36527489 DOI: 10.1007/s00359-022-01597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
Gaussian noise is an important stimulus for the study of biological systems, especially sensory and neural systems. Since these systems are inherently nonlinear, the properties of the noise strongly influence the outcome of the analysis. Therefore, it is crucial to use a well-defined and controlled noise stimulus. In this paper, we first use the example of an insect filiform sensillum, a simple mechanoreceptor with a single sensory cell, to show that changes in the amplitude and spectral properties of the noise stimulus indeed affect the linear transfer function of the sensillum. We then explain step-by-step how to use the inverse fast Fourier transform to generate a Gaussian noise that has an arbitrary user-defined amplitude spectrum, including a band-limited white noise with a perfectly sharp cutoff edge. Finally, we demonstrate how such a perfect band-limited Gaussian white noise stimulus can also be generated with a non-perfect stimulator using a simple procedure that compensates for the filtering properties of the stimulator. With this approach, one can generate well-defined Gaussian noise stimuli that can be adapted to any application. For example, one can generate visual, sound, or vibrational stimuli for experimental research in visual physiology, auditory physiology, and biotremology, as well as inputs for testing various models in theoretical research.
Collapse
Affiliation(s)
- Aleš Škorjanc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Marko Kreft
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
| | - Jan Benda
- Institute for Neurobiology, Eberhard Karls Universität, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Frolov RV, Severina I, Novikova E, Ignatova II, Liu H, Zhukovskaya M, Torkkeli PH, French AS. Opsin knockdown specifically slows phototransduction in broadband and UV-sensitive photoreceptors in Periplaneta americana. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:591-604. [PMID: 36224473 DOI: 10.1007/s00359-022-01580-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
Photoreceptors with different spectral sensitivities serve different physiological and behavioral roles. We hypothesized that such functional evolutionary optimization could also include differences in phototransduction dynamics. We recorded elementary responses to light, quantum bumps (QBs), of broadband green-sensitive and ultraviolet (UV)-sensitive photoreceptors in the cockroach, Periplaneta americana, compound eyes using intracellular recordings. In addition to control photoreceptors, we used photoreceptors from cockroaches whose green opsin 1 (GO1) or UV opsin expression was suppressed by RNA interference. In the control broadband and UV-sensitive photoreceptors average input resistances were similar, but the membrane capacitance, a proxy for membrane area, was smaller in the broadband photoreceptors. QBs recorded in the broadband photoreceptors had comparatively short latencies, high amplitudes and short durations. Absolute sensitivities of both opsin knockdown photoreceptors were significantly lower than in wild type, and, unexpectedly, their latency was significantly longer while the amplitudes were not changed. Morphologic examination of GO1 knockdown photoreceptors did not find significant differences in rhabdom size compared to wild type. Our results differ from previous findings in Drosophila melanogaster rhodopsin mutants characterized by progressive rhabdomere degeneration, where QB amplitudes were larger but phototransduction latency was not changed compared to wild type.
Collapse
Affiliation(s)
- Roman V Frolov
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Pr. Thorez 44, 194223, Saint-Petersburg, Russia.
| | - Irina Severina
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Pr. Thorez 44, 194223, Saint-Petersburg, Russia
| | - Ekaterina Novikova
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Pr. Thorez 44, 194223, Saint-Petersburg, Russia
| | - Irina I Ignatova
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Pr. Thorez 44, 194223, Saint-Petersburg, Russia
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, P.O. BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Marianna Zhukovskaya
- Laboratory of Comparative Sensory Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Pr. Thorez 44, 194223, Saint-Petersburg, Russia
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, P.O. BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, P.O. BOX 15000, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
4
|
Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:55-69. [PMID: 31858215 PMCID: PMC6995784 DOI: 10.1007/s00359-019-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Nocturnal vision in insects depends on the ability to reliably detect scarce photons. Nocturnal insects tend to have intrinsically more sensitive and larger rhabdomeres than diurnal species. However, large rhabdomeres have relatively high membrane capacitance (Cm), which can strongly low-pass filter the voltage bumps, widening and attenuating them. To investigate the evolution of photoreceptor signaling under near dark, we recorded elementary current and voltage responses from a number of species in six insect orders. We found that the gain of phototransduction increased with Cm, so that nocturnal species had relatively large and prolonged current bumps. Consequently, although the voltage bump amplitude correlated negatively with Cm, the strength of the total voltage signal increased. Importantly, the background voltage noise decreased strongly with increasing Cm, yielding a notable increase in signal-to-noise ratio for voltage bumps. A similar decrease in the background noise with increasing Cm was found in intracellular recordings in vivo. Morphological measurements of rhabdomeres were consistent with our Cm estimates. Our results indicate that the increased photoreceptor Cm in nocturnal insects is a major sensitivity-boosting and noise-suppressing adaptation. However, by requiring a compensatory increase in the gain of phototransduction, this adaptation comes at the expense of the signaling bandwidth.
Collapse
|
5
|
Abstract
AbstractVariability in the electrophysiological properties of homotypic photoreceptors is widespread and is thought to facilitate functioning under disparate illumination conditions. Compound eyes of insects have three sources of variability: inter-individual, intra-individual, and intra-ommatidial, the latter two overlapping. Here, I explored the causes of variability inPeriplaneta americana, a nocturnal insect characterized by highly variable photoreceptor responses. By recording from photoreceptors in dissociated ommatidia, including consecutive recordings from photoreceptors in the same ommatidium (SO), I studied the variability of six properties: whole-cell membrane capacitance (Cm), phototransduction latency, maximal conductance (Gmax) and the slope factor of the sustained Kv current, absolute sensitivity in dim light, and sustained light-induced current (LIC) amplitude in bright light. Coefficient of variation (CV) metrics were used to compare variances in four experimental groups: SO, same animal (SA), all data combined “full sample” (FS), and full sample of all SO recordings (FSSO). For the normally distributed parametersCm,Gmax, slope factor, and latency, the highest CV values were found in FS and FSSO, intermediate in SA, and the lowest in SO. On average, SO variance accounted for 47% of the full-sample variance in these four parameters. Absolute sensitivity and LIC values were not normally distributed, and the differences in variability between SO and FS/FSSO groups were smaller than for the other four parameters. These results indicate two main sources of variability, intra-ommatidial and inter-individual. Inter-individual variability was investigated by exposing adult cockroaches to constant light or dark for several months. In both groups, the majority of CV measures for the six parameters decreased compared to control, indicating substantial contribution of phenotypic plasticity to inter-individual differences. Analysis of variability of resting potential and elementary voltage responses revealed that resting potential is mainly determined by the sustained Kv conductance, whereas voltage bump amplitude is mainly determined by current bump amplitude andCm.
Collapse
|
6
|
Frolov RV, Immonen EV, Saari P, Torkkeli PH, Liu H, French AS. Phenotypic plasticity in Periplaneta americana photoreceptors. J Gen Physiol 2018; 150:1386-1396. [PMID: 30115661 PMCID: PMC6168239 DOI: 10.1085/jgp.201812107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
Plasticity is a crucial aspect of neuronal physiology essential for proper development and continuous functional optimization of neurons and neural circuits. Despite extensive studies of different visual systems, little is known about plasticity in mature microvillar photoreceptors. Here we investigate changes in electrophysiological properties and gene expression in photoreceptors of the adult cockroach, Periplaneta americana, after exposure to constant light (CL) or constant dark (CD) for several months. After CL, we observed a decrease in mean whole-cell capacitance, a proxy for cell membrane area, from 362 ± 160 to 157 ± 58 pF, and a decrease in absolute sensitivity. However, after CD, we observed an increase in capacitance to 561 ± 155 pF and an increase in absolute sensitivity. Small changes in the expression of light-sensitive channels and signaling molecules were detected in CD retinas, together with a substantial increase in the expression of the primary green-sensitive opsin (GO1). Accordingly, light-induced currents became larger in CD photoreceptors. Even though normal levels of GO1 expression were retained in CL photoreceptors, light-induced currents became much smaller, suggesting that factors other than opsin are involved. Latency of phototransduction also decreased significantly in CL photoreceptors. Sustained voltage-activated K+ conductance was not significantly different between the experimental groups. The reduced capacitance of CL photoreceptors expanded their bandwidth, increasing the light-driven voltage signal at high frequencies. However, voltage noise was also amplified, probably because of unaltered expression of TRPL channels. Consequently, information transfer rates were lower in CL than in control or CD photoreceptors. These changes in whole-cell capacitance and electrophysiological parameters suggest that structural modifications can occur in the photoreceptors to adapt their function to altered environmental conditions. The opposing patterns of modifications in CL and CD photoreceptors differ profoundly from previous findings in Drosophila melanogaster photoreceptors.
Collapse
Affiliation(s)
- Roman V Frolov
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Esa-Ville Immonen
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Paulus Saari
- Biophysics group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Frolov RV. On the role of transient depolarization-activated K + current in microvillar photoreceptors. J Gen Physiol 2018; 150:1287-1298. [PMID: 30049678 PMCID: PMC6122929 DOI: 10.1085/jgp.201711940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 01/30/2023] Open
Abstract
The transient K+ current carried by Shaker channels is thought to play a role in low-frequency signal amplification in Drosophila melanogaster photoreceptors. By combining patch-clamp recordings with a physiological variability analysis, Frolov reveals its role in high-frequency signal transmission. Photoreceptors in the compound eyes of most insect species express two functional types of depolarization-activated potassium currents: a transient A-type current (IA) and a sustained delayed rectifier current (IDR). The role of Shaker-dependent IA in Drosophila melanogaster photoreceptors was previously investigated by comparing intracellular recordings from Shaker and wild-type photoreceptors. Shaker channels were proposed to be involved in low-frequency signal amplification in dim light and reduction of the metabolic cost of information transfer. Here, I study the function of IA in photoreceptors of the cockroach Panchlora nivea using the patch-clamp method. Responses to Gaussian white-noise stimuli reveal that blockade of IA with 4-aminopyridine has no discernible effect on voltage responses or information processing. However, because open-channel blockers are often ineffective at low membrane potentials, no conclusion on the role of IA could be made on the basis of negative results of pharmacological tests. Using a relatively large set of control data, a physiological variability analysis was performed to discern the role of IA. Amplitudes of the IA window current and half-activation potentials correlate strongly with membrane corner frequencies, especially in dim light, indicating that IA facilitates transmission of higher frequencies. Consistent with voltage-dependent inactivation of IA, these correlations decrease with depolarization in brighter backgrounds. In contrast, correlations involving IDR are comparatively weak. Upon reexamining photoreceptor conductance in wild-type and Shaker strains of D. melanogaster, I find a biphasic voltage dependence near the resting potential in a minority of photoreceptors from both strains, indicating that Shaker channels are not crucial for early amplification of voltage signals in D. melanogaster photoreceptors. Leak current in Shaker photoreceptors at the level of the soma is not elevated. These results suggest a novel role for IA in facilitating transmission of high-frequency signals in microvillar photoreceptors.
Collapse
Affiliation(s)
- Roman V Frolov
- Faculty of Science, Nano and Molecular Materials Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Frolov RV, Matsushita A, Arikawa K. Not flying blind: a comparative study of photoreceptor function in flying and non-flying cockroaches. ACTA ACUST UNITED AC 2017; 220:2335-2344. [PMID: 28404730 DOI: 10.1242/jeb.159103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/10/2017] [Indexed: 11/20/2022]
Abstract
Flying is often associated with superior visual performance, as good vision is crucial for detection and implementation of rapid visually guided aerial movements. To understand the evolution of insect visual systems it is therefore important to compare phylogenetically related species with different investments in flight capability. Here, we describe and compare morphological and electrophysiological properties of photoreceptors from the habitually flying green cockroach Panchlora nivea and the American cockroach Periplaneta americana, which flies only at high ambient temperatures. In contrast to Periplaneta, ommatidia in Panchlora were characterized by two-tiered rhabdom, which might facilitate detection of polarized light while flying in the dark. In patch-clamp experiments, we assessed the absolute sensitivity to light, elementary and macroscopic light-activated current and voltage responses, voltage-activated potassium (Kv) conductances, and information transfer. Both species are nocturnal, and their photoreceptors were similarly sensitive to light. However, a number of important differences were found, including the presence in Panchlora of a prominent transient Kv current and a generally low variability in photoreceptor properties. The maximal information rate in Panchlora was one-third higher than in Periplaneta, owing to a substantially higher gain and membrane corner frequency. The differences in performance could not be completely explained by dissimilarities in the light-activated or Kv conductances; instead, we suggest that the superior performance of Panchlora photoreceptors mainly originates from better synchronization of elementary responses. These findings raise the issue of whether the evolutionary tuning of photoreceptor properties to visual demands proceeded differently in Blattodea than in Diptera.
Collapse
Affiliation(s)
- Roman V Frolov
- Faculty of Science, Nano and Molecular Materials Research Unit, University of Oulu, PO Box 3000, Oulun Yliopisto 90014, Finland
| | - Atsuko Matsushita
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Shonan Village, Hayama 240-0193, Japan
| |
Collapse
|
9
|
Saari P, French AS, Torkkeli PH, Liu H, Immonen EV, Frolov RV. Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana. J Gen Physiol 2017; 149:455-464. [PMID: 28283577 PMCID: PMC5379922 DOI: 10.1085/jgp.201611737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s1 because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.
Collapse
Affiliation(s)
- Paulus Saari
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Esa-Ville Immonen
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland.,Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Roman V Frolov
- Biophysics Group, Nano and Molecular Systems Research Unit, University of Oulu, Oulu FI-90014, Finland
| |
Collapse
|
10
|
French AS, Immonen EV, Frolov RV. Static and Dynamic Adaptation of Insect Photoreceptor Responses to Naturalistic Stimuli. Front Physiol 2016; 7:477. [PMID: 27826250 PMCID: PMC5078296 DOI: 10.3389/fphys.2016.00477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/05/2016] [Indexed: 02/03/2023] Open
Abstract
We describe a new nonlinear dynamic model of insect phototransduction using a NLN (nonlinear, linear, nonlinear) block structure. The first nonlinear stage provides a single exponential decline in gain and mean following the start of light stimulation. The linear stage uses a two-parameter log-normal convolution model previously applied alone to insect photoreceptors. The final stage is a static quadratic function. The model fitted current and voltage responses of isolated single photoreceptors from three different insect species with reasonable fidelity when they were stimulated by naturalistic time series having wide bandwidth and contrast, over a light intensity range of >1:104. Mean squared error values for receptor current and receptor potential varied over ~2–60%, with many values below 10%. Linear log-normal filter parameters did not vary strongly with species or light intensity. Initial gain reduction was only large for the highest light levels, while the time constant of gain and mean reduction decreased with light intensity. The final nonlinearity changed from positively to negatively quadratic with increasing light intensity, indicating a change from threshold, or expansion to saturating compression with greater signal strength. Photoreceptor information transmission was estimated by linear information capacity and signal entropy measurements of both experimental data and predicted outputs of the model for identical stimuli at each light level. Comparison of actual and predicted data indicated significant added noise during phototransduction, with information being progressively lost by nonlinear behavior with increasing light intensity.
Collapse
Affiliation(s)
- Andrew S French
- Department of Physiology and Biophysics, Dalhousie University Nova Scotia, CA, Canada
| | | | | |
Collapse
|
11
|
Frolov RV. Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes. J Neurophysiol 2016; 116:709-23. [PMID: 27250910 DOI: 10.1152/jn.00288.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Traditional electrophysiological research on invertebrate photoreceptors has been conducted in vivo, using intracellular recordings from intact compound eyes. The only exception used to be Drosophila melanogaster, which was exhaustively studied by both intracellular recording and patch-clamp methods. Recently, several patch-clamp studies have provided new information on the biophysical properties of photoreceptors of diverse insect species, having both apposition and neural superposition eyes, in the contexts of visual ecology, behavior, and ontogenesis. Here, I discuss these and other relevant results, emphasizing differences between fruit flies and other species, between photoreceptors of diurnal and nocturnal insects, properties of distinct functional types of photoreceptors, postembryonic developmental changes, and relationships between voltage-gated potassium channels and visual ecology.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
12
|
Frolov R, Immonen EV, Weckström M. Visual ecology and potassium conductances of insect photoreceptors. J Neurophysiol 2016; 115:2147-57. [PMID: 26864762 DOI: 10.1152/jn.00795.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/06/2016] [Indexed: 01/22/2023] Open
Abstract
Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance.
Collapse
Affiliation(s)
- Roman Frolov
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| | - Esa-Ville Immonen
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| | - Matti Weckström
- Department of Physics, Division of Biophysics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|