Kamkar S, Ghezloo F, Moghaddam HA, Borji A, Lashgari R. Multiple-target tracking in human and machine vision.
PLoS Comput Biol 2020;
16:e1007698. [PMID:
32271746 PMCID:
PMC7144962 DOI:
10.1371/journal.pcbi.1007698]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Humans are able to track multiple objects at any given time in their daily activities—for example, we can drive a car while monitoring obstacles, pedestrians, and other vehicles. Several past studies have examined how humans track targets simultaneously and what underlying behavioral and neural mechanisms they use. At the same time, computer-vision researchers have proposed different algorithms to track multiple targets automatically. These algorithms are useful for video surveillance, team-sport analysis, video analysis, video summarization, and human–computer interaction. Although there are several efficient biologically inspired algorithms in artificial intelligence, the human multiple-target tracking (MTT) ability is rarely imitated in computer-vision algorithms. In this paper, we review MTT studies in neuroscience and biologically inspired MTT methods in computer vision and discuss the ways in which they can be seen as complementary.
Multiple-target tracking (MTT) is a challenging task vital for both a human’s daily life and for many artificial intelligent systems, such as those used for urban traffic control. Neuroscientists are interested in discovering the underlying neural mechanisms that successfully exploit cognitive resources, e.g., spatial attention or memory, during MTT. Computer-vision specialists aim to develop powerful MTT algorithms based on advanced models or data-driven computational methods. In this paper, we review MTT studies from both communities and discuss how findings from cognitive studies can inspire developers to construct higher performing MTT algorithms. Moreover, some directions have been proposed through which MTT algorithms could raise new questions in the cognitive science domain, and answering them can shed light on neural processes underlying MTT.
Collapse