1
|
Nørkær E, Gobbo S, Roald T, Starrfelt R. Disentangling developmental prosopagnosia: A scoping review of terms, tools and topics. Cortex 2024; 176:161-193. [PMID: 38795651 DOI: 10.1016/j.cortex.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
The goal of this preregistered scoping review is to create an overview of the research on developmental prosopagnosia (DP). Through analysis of all empirical studies of DP in adults, we investigate 1) how DP is conceptualized and defined, 2) how individuals are classified with DP and 3) which aspects of DP are investigated in the literature. We reviewed 224 peer-reviewed studies of DP. Our analysis of the literature reveals that while DP is predominantly defined as a lifelong face recognition impairment in the absence of acquired brain injury and intellectual/cognitive problems, there is far from consensus on the specifics of the definition with some studies emphasizing e.g., deficits in face perception, discrimination and/or matching as core characteristics of DP. These differences in DP definitions is further reflected in the vast heterogeneity in classification procedures. Only about half of the included studies explicitly state how they classify individuals with DP, and these studies adopt 40 different assessment tools. The two most frequently studied aspects of DP are the role of holistic processing and the specificity of face processing, and alongside a substantial body of neuroimaging studies of DP, this paints a picture of a research field whose scientific interests and aims are rooted in cognitive neuropsychology and neuroscience. We argue that these roots - alongside the heterogeneity in DP definition and classification - may have limited the scope and interest of DP research unnecessarily, and we point to new avenues of research for the field.
Collapse
Affiliation(s)
- Erling Nørkær
- Department of Psychology, University of Copenhagen, Denmark.
| | - Silvia Gobbo
- Department of Psychology, Università degli Studi di Milano-Bicocca, Italy
| | - Tone Roald
- Department of Psychology, University of Copenhagen, Denmark
| | | |
Collapse
|
2
|
Rosenzweig G. Scientific Thinking About Legal Truth. Front Psychol 2022; 13:918282. [PMID: 35874415 PMCID: PMC9298174 DOI: 10.3389/fpsyg.2022.918282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
In the criminal process, the fact finders assess the validity of impressions reported by witnesses based on their perceptions and determine what has happened in reality. However, these impressions are not subject to any external validity check. The Innocence Project revealed the failure of this subjective method and showed how it can lead to innocent convictions. The legal literature has examined ways to manage the risk of mistakes, but these ways are inconsistent with the scientific understanding of the need for external validity measurements, suggesting the need for new ways of thinking about the legal search for truth and justice.
Collapse
|
3
|
Hacker CM, Biederman I, Zhu T, Nelken M, X Meschke E. The sizable difficulty in matching unfamiliar faces differing only moderately in orientation in depth is a function of image dissimilarity. Vision Res 2022; 194:107959. [PMID: 35182894 DOI: 10.1016/j.visres.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
Attempting to match unfamiliar, highly similar faces at moderate differences in orientation in depth is surprisingly difficult. No neurocomputational account of these costs that addressed the representation of faces by which a face-similarity metric can be derived has been offered. A metric specifying the similarity of the to-be-distinguished faces is required as the rotation costs will be a function of the difficulty in distinguishing the faces. Consequently, rotation costs have typically been described in terms of angle of disparity, rather than the dissimilarity of the faces produced by the rotation. We assessed the effects of orientation disparity in a match-to-sample paradigm of a simultaneous presentation of a triangular display of three faces. Two lower test faces, a matching face and a foil, were always at the same orientation and differed by 0° to 20° from the sample on top. The similarity of the images was scaled by a model based on simple cell tuning, modeled as Gabor wavelets, that correlates almost perfectly with psychophysical similarity. Two measures of face similarity, with approximately additive effects on reaction times, accounted for matching performance: a) the decrease in similarity between the images of the matching and sample faces produced by increases in their orientation disparity, and b) the similarity between the matching face and the selection of a particular foil. The 20° orientation disparity was sufficient to yield a sizeable 301 msec increase in reaction time. An implication of the results is that the activity in V1 produced by viewing a face is fed forward to areas responsible for the individuation of that face.
Collapse
Affiliation(s)
| | - Irving Biederman
- Program in Neuroscience, University of Southern California, USA; Department of Psychology, University of Southern California, USA.
| | - Tianyi Zhu
- Department of Psychology, University of Southern California, USA
| | - Miles Nelken
- Program in Neuroscience, University of Southern California, USA
| | - Emily X Meschke
- Program in Neuroscience, University of Southern California, USA
| |
Collapse
|
4
|
Yan X, Goffaux V, Rossion B. Coarse-to-Fine(r) Automatic Familiar Face Recognition in the Human Brain. Cereb Cortex 2021; 32:1560-1573. [PMID: 34505130 DOI: 10.1093/cercor/bhab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
At what level of spatial resolution can the human brain recognize a familiar face in a crowd of strangers? Does it depend on whether one approaches or rather moves back from the crowd? To answer these questions, 16 observers viewed different unsegmented images of unfamiliar faces alternating at 6 Hz, with spatial frequency (SF) content progressively increasing (i.e., coarse-to-fine) or decreasing (fine-to-coarse) in different sequences. Variable natural images of celebrity faces every sixth stimulus generated an objective neural index of single-glanced automatic familiar face recognition (FFR) at 1 Hz in participants' electroencephalogram (EEG). For blurry images increasing in spatial resolution, the neural FFR response over occipitotemporal regions emerged abruptly with additional cues at about 6.3-8.7 cycles/head width, immediately reaching amplitude saturation. When the same images progressively decreased in resolution, the FFR response disappeared already below 12 cycles/head width, thus providing no support for a predictive coding hypothesis. Overall, these observations indicate that rapid automatic recognition of heterogenous natural views of familiar faces is achieved from coarser visual inputs than generally thought, and support a coarse-to-fine FFR dynamics in the human brain.
Collapse
Affiliation(s)
- Xiaoqian Yan
- Department of Psychology, Stanford University, Palo Alto, CA 94305, USA.,Université de Lorraine, CNRS, CRAN, 54000 Nancy, France.,Institute of Research in Psychology (IPSY), University of Louvain, Louvain-La-Neuve 1348, Belgium
| | - Valérie Goffaux
- Institute of Research in Psychology (IPSY), University of Louvain, Louvain-La-Neuve 1348, Belgium.,Department of Cognitive Neuroscience, Maastricht University, Maastricht, 6229, the Netherlands.,Institute of Neuroscience (IoNS), University of Louvain, Louvain-La-Neuve 1348, Belgium
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, 54000 Nancy, France.,Institute of Research in Psychology (IPSY), University of Louvain, Louvain-La-Neuve 1348, Belgium.,Université de Lorraine, CHRU-Nancy, Service de Neurologie, 54000 Nancy, France
| |
Collapse
|
5
|
Rezlescu C, Danaila I, Miron A, Amariei C. More time for science: Using Testable to create and share behavioral experiments faster, recruit better participants, and engage students in hands-on research. PROGRESS IN BRAIN RESEARCH 2020; 253:243-262. [DOI: 10.1016/bs.pbr.2020.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Oruc I, Balas B, Landy MS. Introduction to the special issue on face perception: Experience, models, and neural mechanisms. Vision Res 2019; 157:10-11. [PMID: 31173774 DOI: 10.1016/j.visres.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ipek Oruc
- Ophthalmology and Visual Sciences, University of British Columbia, Canada; Neuroscience, University of British Columbia, Canada
| | - Benjamin Balas
- Department of Psychology and Center for Visual and Cognitive Neuroscience, North Dakota State University, United States
| | - Michael S Landy
- Department of Psychology and Center for Neural Science, New York University, United States
| |
Collapse
|
7
|
Zimmermann FGS, Yan X, Rossion B. An objective, sensitive and ecologically valid neural measure of rapid human individual face recognition. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181904. [PMID: 31312474 PMCID: PMC6599768 DOI: 10.1098/rsos.181904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Humans may be the only species able to rapidly and automatically recognize a familiar face identity in a crowd of unfamiliar faces, an important social skill. Here, by combining electroencephalography (EEG) and fast periodic visual stimulation (FPVS), we introduce an ecologically valid, objective and sensitive neural measure of this human individual face recognition function. Natural images of various unfamiliar faces are presented at a fast rate of 6 Hz, allowing one fixation per face, with variable natural images of a highly familiar face identity, a celebrity, appearing every seven images (0.86 Hz). Following a few minutes of stimulation, a high signal-to-noise ratio neural response reflecting the generalized discrimination of the familiar face identity from unfamiliar faces is observed over the occipito-temporal cortex at 0.86 Hz and harmonics. When face images are presented upside-down, the individual familiar face recognition response is negligible, being reduced by a factor of 5 over occipito-temporal regions. Differences in the magnitude of the individual face recognition response across different familiar face identities suggest that factors such as exposure, within-person variability and distinctiveness mediate this response. Our findings of a biological marker for fast and automatic recognition of individual familiar faces with ecological stimuli open an avenue for understanding this function, its development and neural basis in neurotypical individual brains along with its pathology. This should also have implications for the use of facial recognition measures in forensic science.
Collapse
Affiliation(s)
- Friederike G. S. Zimmermann
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- BG Klinikum Hamburg, Bergedorfer Straße 10, 21033 Hamburg, Germany
| | - Xiaoqian Yan
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- Université de Lorraine, CNRS, CRAN, 54000 Nancy, France
- CHRU-Nancy, Service de Neurologie, 54000 Nancy, France
| |
Collapse
|
8
|
Rosenzweig G, Bonneh YS. Familiarity revealed by involuntary eye movements on the fringe of awareness. Sci Rep 2019; 9:3029. [PMID: 30816258 PMCID: PMC6395845 DOI: 10.1038/s41598-019-39889-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022] Open
Abstract
Involuntary eye movements during fixation of gaze are typically transiently inhibited following stimulus onset. This oculomotor inhibition (OMI), which includes microsaccades and spontaneous eye blinks, is modulated by stimulus saliency and anticipation, but it is currently unknown whether it is sensitive to familiarity. To investigate this, we measured the OMI while observers passively viewed a slideshow of one familiar and 7 unfamiliar facial images presented briefly at 1 Hz in random order. Since the initial experiments indicated that OMI was occasionally insensitive to familiarity when the facial images were highly visible, and to prevent top-down strategies and potential biases, we limited visibility by backward masking making the faces barely visible or at the fringe of awareness. Under these conditions, we found prolonged inhibition of both microsaccades and eye-blinks, as well as earlier onset of microsaccade inhibition with familiarity. These findings demonstrate, for the first time, the sensitivity of OMI to familiarity. Because this is based on involuntary eye movements and can be measured on the fringe of awareness and in passive viewing, our results provide direct evidence that OMI can be used as a novel physiological measure for studying hidden memories with potential implications for health, legal, and security purposes.
Collapse
Affiliation(s)
- Gal Rosenzweig
- Interdisciplinary graduate authority, University of Haifa, Haifa, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|