1
|
Marcos S, Artal P, Atchison DA, Hampson K, Legras R, Lundström L, Yoon G. Adaptive optics visual simulators: a review of recent optical designs and applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:6508-6532. [PMID: 36589577 PMCID: PMC9774875 DOI: 10.1364/boe.473458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/02/2023]
Abstract
In their pioneering work demonstrating measurement and full correction of the eye's optical aberrations, Liang, Williams and Miller, [JOSA A14, 2884 (1997)10.1364/JOSAA.14.002884] showed improvement in visual performance using adaptive optics (AO). Since then, AO visual simulators have been developed to explore the spatial limits to human vision and as platforms to test non-invasively optical corrections for presbyopia, myopia, or corneal irregularities. These applications have allowed new psychophysics bypassing the optics of the eye, ranging from studying the impact of the interactions of monochromatic and chromatic aberrations on vision to neural adaptation. Other applications address new paradigms of lens designs and corrections of ocular errors. The current paper describes a series of AO visual simulators developed in laboratories around the world, key applications, and current trends and challenges. As the field moves into its second quarter century, new available technologies and a solid reception by the clinical community promise a vigorous and expanding use of AO simulation in years to come.
Collapse
Affiliation(s)
- Susana Marcos
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester, New York 14642, USA
| | - Pablo Artal
- Laboratorio de Optica, Universidad de Murcia, Campus Universitario de Espinardo, 30100, Spain
| | - David A. Atchison
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane Q, 4059, Australia
| | - Karen Hampson
- Department of Optometry, University of Manchester, Manchester M13 9PL, UK
| | - Richard Legras
- LuMIn, CNRS, ENS Paris-Saclay, Université Paris-Saclay, CentraleSupelec, Université Paris-Saclay Orsay, 91400, France
| | - Linda Lundström
- KTH (Royal Institute of Technology), Stockholm, 10691, Sweden
| | - Geunyoung Yoon
- College of Optometry, University of Houston, Houston, 77004, USA
| |
Collapse
|
2
|
Lago CM, de Castro A, Benedí-García C, Aissati S, Marcos S. Evaluating the effect of ocular aberrations on the simulated performance of a new refractive IOL design using adaptive optics. BIOMEDICAL OPTICS EXPRESS 2022; 13:6682-6694. [PMID: 36589555 PMCID: PMC9774854 DOI: 10.1364/boe.473573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2023]
Abstract
Adaptive optics (AO) visual simulators are excellent platforms for non-invasive simulation visual performance with new intraocular lens (IOL) designs, in combination with a subject own ocular aberrations and brain. We measured the through focus visual acuity in subjects through a new refractive IOL physically inserted in a cuvette and projected onto the eye's pupil, while aberrations were manipulated (corrected, or positive/negative spherical aberration added) using a deformable mirror (DM) in a custom-developed AO simulator. The IOL increased depth-of-focus (DOF) to 1.53 ± 0.21D, while maintaining high Visual Acuity (VA, -0.07 ± 0.05), averaged across subjects and conditions. Modifying the aberrations did not alter IOL performance on average.
Collapse
Affiliation(s)
- Carmen M. Lago
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- 2EyesVision S.L., Plaza de la Encina 10, Madrid, 28760, Spain
| | - Alberto de Castro
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
| | - Clara Benedí-García
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
| | - Sara Aissati
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester,14642, New York, USA
| | - Susana Marcos
- Visual Optics and Biophotonics Laboratory, Instituto de Óptica, Consejo Superior de Investigaciones Científicas, Calle Serrano 121, Madrid, 28006, Spain
- Center for Visual Sciences; The Institute of Optics and Flaum Eye Institute, University of Rochester,14642, New York, USA
| |
Collapse
|
3
|
Understanding In Vivo Chromatic Aberrations in Pseudophakic Eyes Using on Bench and Computational Approaches. PHOTONICS 2022. [DOI: 10.3390/photonics9040226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diffractive multifocal intraocular lenses (IOLs) modulate chromatic aberration and reduce it at certain distances due to interactions between the refractive and diffractive chromatic components. However, the extent to which computer modeling and on bench measurements of IOL chromatic aberration translate to chromatic aberration in patients implanted with these multifocal IOLs (MIOLs) is not yet fully understood. In this study, we compare the chromatic difference of focus and longitudinal chromatic aberrations in pseudophakic patients implanted with different IOL designs (monofocal and trifocal IOLs) and materials (hydrophobic and hydrophilic), and compared them with predictions from computer eye models and on bench measurements with the same IOLs. Patient data consisted of results from 63 pseudophakic eyes reported in four different studies and obtained psychophysically in the visual testing channel of a custom-developed polychromatic adaptive optics system. Computational predictions were obtained using ray tracing on computer eye models, and modulation transfer function (MTF) on bench measurements on physical eye models. We found that LCA (in vivo/simulated) for far vision was 1.37 ± 0.08 D/1.19 D for monofocal hydrophobic, 1.21 ± 0.08 D/0.88 D for monofocal hydrophilic, 0.99 ± 0.06 D/1.19 D for MIOL hydrophobic, and 0.82 ± 0.05 D/0.88 D for MIOL hydrophilic. For intermediate and near vision, LCA (in vivo/simulated) was 0.67 ± 0.10 D/0.75 D and 0.23 ± 0.08 D/0.19 D for MIOL hydrophobic and 0.27 ± 0.15 D/0.38 D and 0.15 ± 0.15 D/−0.13 D for MIOL hydrophilic, respectively. In conclusion, computational ray tracing and on bench measurements allowed for evaluating in vivo chromatic aberration with different materials and designs for multifocal diffractive intraocular lenses.
Collapse
|
4
|
Marcos S, Benedí-García C, Aissati S, Gonzalez-Ramos AM, Lago CM, Radhkrishnan A, Romero M, Vedhakrishnan S, Sawides L, Vinas M. VioBio lab adaptive optics: technology and applications by women vision scientists. Ophthalmic Physiol Opt 2020; 40:75-87. [PMID: 32147855 DOI: 10.1111/opo.12677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Adaptive Optics allows measurement and manipulation of the optical aberrations of the eye. We review two Adaptive Optics set-ups implemented at the Visual Optics and Biophotonics Laboratory, and present examples of their use in better understanding of the role of optical aberrations on visual perception, in normal and treated eyes. RECENT FINDINGS Two systems (AOI and AOII) are described that measure ocular aberrations with a Hartmann-Shack wavefront sensor, which operates in closed-loop with an electromagnetic deformable mirror, and visual stimuli are projected in a visual display for psychophysical measurements. AOI operates in infrared radiation (IR) light. AOII is provided with a supercontiniuum laser source (IR and visible wavelengths), additional elements for simulation (spatial light modulator, temporal multiplexing with optotunable lenses, phase plates, cuvette for intraocular lenses-IOLs), and a double-pass retinal camera. We review several studies undertaken with these AO systems, including the evaluation of the visual benefits of AO correction, vision with simulated multifocal IOLs (MIOLs), optical aberrations in pseudophakic eyes, chromatic aberrations and their visual impact, and neural adaptation to ocular aberrations. SUMMARY Monochromatic and chromatic aberrations have been measured in normal and treated eyes. AO systems have allowed understanding the visual benefit of correcting aberrations in normal eyes and the adaptation of the visual system to the eye's native aberrations. Ocular corrections such as intraocular and contact lenses modify the wave aberrations. AO systems allow simulating vision with these corrections before they are implanted/fitted in the eye, or even before they are manufactured, revealing great potential for industry and the clinical practice. This review paper is part of a special issue of Ophthalmic & Physiological Optics on women in visual optics, and is co-authored by all women scientists of the research team.
Collapse
Affiliation(s)
- Susana Marcos
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Clara Benedí-García
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Sara Aissati
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Ana M Gonzalez-Ramos
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Carmen M Lago
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Aiswaryah Radhkrishnan
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Mercedes Romero
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Shrilekha Vedhakrishnan
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Lucie Sawides
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| | - Maria Vinas
- Visual Optics and Biophotonics Lab, Instituto de Optica "Daza de Valdés" (IO-CSIC), Consejo Superior de Investigaciones Científicas, Serrano, Madrid, Spain
| |
Collapse
|