1
|
Perioperative Exhaled Nitric Oxide as an Indicator for Postoperative Pneumonia in Surgical Lung Cancer Patients: A Prospective Cohort Study Based on 183 Cases. Can Respir J 2022; 2022:9149385. [PMID: 36106062 PMCID: PMC9464969 DOI: 10.1155/2022/9149385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction This study is conducted to investigate the correlation between perioperative fractional exhaled nitric oxide and postoperative pneumonia (POP) and the feasibility of perioperative FeNO for predicting POP in surgical lung cancer patients. Methods Patients who were diagnosed with non-small-cell lung cancer (NSCLC) were prospectively analyzed, and the relationship between perioperative FeNO and POP was evaluated based on patients' basic characteristics and clinical data in the hospital. Results There were 218 patients enrolled in this study. Finally, 183 patients were involved in the study, with 19 of them in the POP group and 164 in the non-POP group. The POP group had significantly higher postoperative FeNO (median: 30.0 vs. 19.0 ppb, P < 0.001) as well as change in FeNO (median: 10.0 vs. 0.0 ppb, P < 0.001) before and after the surgery. For predicting POP based on the receiver operating characteristic (ROC) curve, a cutoff value of 25 ppb for postoperative FeNO (Youden's index: 0.515, sensitivity: 78.9%, and specificity: 72.6%) and 4 ppb for change in FeNO (Youden's index: 0.610, sensitivity: 84.2%, specificity: 76.8%) were selected. Furthermore, according to the bivariate regression analysis, FEV1/FVC (OR = 0.948, 95% CI: 0.899–0.999, P=0.048), POD1 FeNO (OR = 1.048, 95% CI: 1.019–1.077, P=0.001), and change in FeNO (OR = 1.087, 95% CI: 1.044–1.132, P < 0.001) were significantly associated with occurrence of POP. Conclusions This prospective study revealed that a high postoperative FeNO (>25 ppb), as well as an increased change in FeNO (>4 ppb), may have the potential in detecting the occurrence of POP in surgical lung cancer patients.
Collapse
|
2
|
Zhou P, Song NC, Zheng ZK, Li YQ, Li JS. MMP2 and MMP9 contribute to lung ischemia-reperfusion injury via promoting pyroptosis in mice. BMC Pulm Med 2022; 22:230. [PMID: 35705936 PMCID: PMC9202153 DOI: 10.1186/s12890-022-02018-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/01/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Lung ischemia-reperfusion injury (LIRI) is a cause of poor prognosis in several lung diseases and after lung transplantation. In LIRI, matrix metalloproteinases and pyroptosis indicators change in parallel, both of them involvement of inflammatory modulation, but it is unclear whether they are related to each other. METHODS We analyzed the matrix metalloproteinases (MMPs) changes from RNA sequencing (RNA-Seq) data of human transplantation and rat ischemia-reperfusion lung tissues in the Group on Earth Observations (GEO) database. Then established the mouse LIRI model to validate the changes. Further, the severity of lung injury was measured after intervening the matrix metalloproteinases changes with their selective inhibitor during Lung ischemia-reperfusion. Meanwhile, lung, pyroptosis was assessed by assaying the activity of Caspase-1 and interleukin 1β (IL-1β) before and after intervening the matrix metalloproteinases changes. RESULTS The RNA-Seq data revealed that matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9) mRNA expression was elevated both in human lung transplantation and rat lung ischemia-reperfusion tissues, consistent with the change in our mouse model. At the same time, the activity of Caspase-1 and IL-1β were increased after LIRI. While, the lung injury was attenuated for the use of MMP2 and MMP9 selective inhibitor SB-3CT. Likewise, lung pyroptosis alleviated when treatment the mice with SB-3CT in LIRI. CONCLUSION We conclude that MMP2 and MMP9 are involved in the process of LIRI, the mechanism of which is related to the promotion of lung pyroptosis.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nai-Cheng Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Kun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi-Qing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jin-Song Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Korovesi I, Kotanidou A, Papadomichelakis E, Livaditi O, Sotiropoulou C, Koutsoukou A, Marczin N, Orfanos SE. Exhaled nitric oxide and carbon monoxide in mechanically ventilated brain-injured patients. J Breath Res 2016; 10:017107. [PMID: 26934167 DOI: 10.1088/1752-7155/10/1/017107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The inflammatory influence and biological markers of prolonged mechanical-ventilation in uninjured human lungs remains controversial. We investigated exhaled nitric oxide (NO) and carbon monoxide (CO) in mechanically-ventilated, brain-injured patients in the absence of lung injury or sepsis at two different levels of positive end-expiratory pressure (PEEP). Exhaled NO and CO were assessed in 27 patients, without lung injury or sepsis, who were ventilated with 8 ml kg(-1) tidal volumes under zero end-expiratory pressure (ZEEP group, n = 12) or 8 cm H2O PEEP (PEEP group, n = 15). Exhaled NO and CO was analysed on days 1, 3 and 5 of mechanical ventilation and correlated with previously reported markers of inflammation and gas exchange. Exhaled NO was higher on day 3 and 5 in both patient groups compared to day 1: (PEEP group: 5.8 (4.4-9.7) versus 11.7 (6.9-13.9) versus 10.7 (5.6-16.6) ppb (p < 0.05); ZEEP group: 5.3 (3.8-8.8) versus 9.8 (5.3-12.4) versus 9.6 (6.2-13.5) ppb NO peak levels for days 1, 3 and 5, respectively, p < 0.05). Exhaled CO remained stable on day 3 but significantly decreased by day 5 in the ZEEP group only (6.3 (4.3-9.0) versus 8.1 (5.8-12.1) ppm CO peak levels for day 5 versus 1, p < 0.05). The change scores for peak exhaled CO over day 1 and 5 showed significant correlations with arterial blood pH and plasma TNF levels (r s = 0.49, p = 0.02 and r s = -0.51 p = 0.02, respectively). Exhaled NO correlated with blood pH in the ZEEP group and with plasma levels of IL-6 in the PEEP group. We observed differential changes in exhaled NO and CO in mechanically-ventilated patients even in the absence of manifest lung injury or sepsis. These may suggest subtle pulmonary inflammation and support application of real time breath analysis for molecular monitoring in critically ill patients.
Collapse
Affiliation(s)
- I Korovesi
- 1st Critical Care Department Evangelismos Hospital and 'M. Simou' Laboratory, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Boshier PR, Hanna GB, Marczin N. Exhaled nitric oxide as biomarker of acute lung injury: an unfulfilled promise? J Breath Res 2013; 7:017118. [DOI: 10.1088/1752-7155/7/1/017118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Rosenfeldt F, Wilson M, Lee G, Kure C, Ou R, Braun L, de Haan J. Oxidative stress in surgery in an ageing population: pathophysiology and therapy. Exp Gerontol 2012; 48:45-54. [PMID: 22465624 DOI: 10.1016/j.exger.2012.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 01/22/2023]
Abstract
Reactive oxygen species (ROS) play an important role in the regulation of normal cellular function. When ROS are produced in excess they can have detrimental effects, a state known as oxidative stress. Thus ROS play both physiological and pathophysiological roles in the body. In clinical practice oxidative stress and its counterpart, antioxidant capacity can be measured and can guide remedial therapy. Oxidative stress can have a negative impact in all forms of major surgery including cardiac surgery, general surgery, trauma surgery, orthopedic surgery and plastic surgery; this is particularly marked in an ageing population. Many different therapies to reduce oxidative stress in surgery have been tried with variable results. We conclude that in surgical patients the assessment of oxidative stress, improvement of the understanding of its role, both positive and negative, and devising appropriate therapies represent fruitful fields for future research.
Collapse
Affiliation(s)
- Franklin Rosenfeldt
- Cardiac Surgical Research Unit, Department of Cardiothoracic Surgery, Alfred Hospital, Department of Surgery, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Sanchez-Cruz P, Garcia C, Alegria AE. Role of quinones in the ascorbate reduction rates of S-nitrosoglutathione. Free Radic Biol Med 2010; 49:1387-94. [PMID: 20691779 PMCID: PMC2952480 DOI: 10.1016/j.freeradbiomed.2010.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 07/02/2010] [Accepted: 07/27/2010] [Indexed: 11/26/2022]
Abstract
Quinones are one of the largest classes of antitumor agents approved for clinical use, and several antitumor quinones are in various stages of clinical and preclinical development. Many of these are metabolites of, or are, environmental toxins. Because of their chemical structure they are known to enhance electron transfer processes such as ascorbate oxidation and NO reduction. The paraquinones 2,6-dimethyl-1,4-benzoquinone (DMBQ), 1,4-benzoquinone, methyl-1,4-benzoquinone, 2,6-dimethoxy-1,4-benzoquinone, 2-hydroxymethyl-6-methoxy-1,4-benzoquinone, trimethyl-1,4-benzoquinone, tetramethyl-1,4-benzoquinone, and 2,3-dimethoxy-5-methyl-1,4-benzoquinone; the paranaphthoquinones 1,4-naphthoquinone, menadione, 1,4-naphthoquinone-2-sulfonate, 2-ethylsulfanyl-3-methyl-1,4-naphthoquinone and juglone; and phenanthraquinone (PHQ) all enhance the anaerobic rate of ascorbate reduction of GSNO to produce NO and GSH. Rates of this reaction were much larger for p-benzoquinones and PHQ than for p-naphthoquinone derivatives with similar one-electron redox potentials. The quinone DMBQ also enhances the rate of NO production from S-nitrosylated bovine serum albumin upon ascorbate reduction. Density functional theory calculations suggest that stronger interactions between p-benzo- or phenanthrasemiquinones and GSNO than between p-naphthosemiquinones and GSNO are the major causes of these differences. Thus, quinones, and especially p-quinones and PHQ, could act as enhancers of NO release from GSNO in biomedical systems in the presence of ascorbate. Because quinones are exogenous toxins that could enter the human body via a chemotherapeutic application or as an environmental contaminant, they could boost the release of NO from S-nitrosothiol storages in the body in the presence of ascorbate and thus enhance the responses elicited by a sudden increase in NO levels.
Collapse
Affiliation(s)
- Pedro Sanchez-Cruz
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico 00791
| | - Carmelo Garcia
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico 00791
| | - Antonio E. Alegria
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico 00791
| |
Collapse
|
7
|
den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol 2010; 299:H1283-99. [PMID: 20833966 DOI: 10.1152/ajpheart.00251.2010] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lung ischemia-reperfusion injury remains one of the major complications after cardiac bypass surgery and lung transplantation. Due to its dual blood supply system and the availability of oxygen from alveolar ventilation, the pathogenetic mechanisms of ischemia-reperfusion injury in the lungs are more complicated than in other organs, where loss of blood flow automatically leads to hypoxia. In this review, an extensive overview is given of the molecular and cellular mechanisms that are involved in the pathogenesis of lung ischemia-reperfusion injury and the possible therapeutic strategies to reduce or prevent it. In addition, the roles of neutrophils, alveolar macrophages, cytokines, and chemokines, as well as the alterations in the cell-death related pathways, are described in detail.
Collapse
Affiliation(s)
- Willem A den Hengst
- Department of Thorax and Vascular Surgery, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Ghosh S, Gal J, Marczin N. Carbon monoxide: endogenous mediator, potential diagnostic and therapeutic target. Ann Med 2010; 42:1-12. [PMID: 20092397 DOI: 10.3109/07853890903482877] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The primary objectives of this article are to review the potential role of carbon monoxide (CO) as an endogenous mediator, diagnostic marker for pulmonary disorders, and therapeutic target in critical illness. The review will start by focusing on the importance of the heme oxygenase (HO)-CO axis as an endogenous system as it relates to the cardiovascular and pulmonary systems. It will elucidate the influence of HO gene expression on critical events like shock, sepsis, ischemia-reperfusion and others. Our focus will then shift and look at the potential diagnostic role of exhaled CO in major inflammatory states of the lung, and finally we will highlight the activities on inhaled CO being considered as a possible therapeutic tool and the controversies surrounding it.
Collapse
Affiliation(s)
- Subhamay Ghosh
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, 7624 Pecs, Hungary.
| | | | | |
Collapse
|
9
|
Abstract
Reactive oxygen species are associated with tissue inflammation and injury. Our laboratory has demonstrated that ethane, a stable product of lipid peroxidation, in exhaled breath can be used to measure total body oxidative stress. Herein patients were studied who underwent outpatient surgery, laproscopic bilateral tubal ligation (BTL, n = 10) and anterior cruciate ligament (ACL, n = 10) repair of the knee. These surgical procedures were expected to involve mild degrees of ischemia and reperfusion. In each of these cases propofol, an intravenous anesthetic with antioxidant properties, was used. Breath ethane was measured as a biomarker of oxidative stress that occurred at reperfusion of ischemic tissue. Data were analyzed by one-way analysis of variance. Clinically relevant concentrations of propofol were unable to completely block the increase in oxidative stress following reperfusion in either of these minor surgeries. Breath ethane increased significantly after reperfusion in both the BTL (p = 0.03) and the ACL (p = 0.005) patients. Also, the increase in oxidative stress was related to the time of ischemia.
Collapse
Affiliation(s)
- Robert H Brown
- Department of Anesthesiology and Critical Care Medicine, Division of Pulmonary and Critical Care Medicine in the Department of Medicine, and Division of Physiology in the Department of Environmental Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | |
Collapse
|
10
|
Brown RH, Wagner EM, Cope KA, Risby TH. Propofol and in vivo oxidative stress: effects of preservative. J Breath Res 2009; 3:016003. [PMID: 21383451 DOI: 10.1088/1752-7155/3/1/016003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species are associated with tissue inflammation and injury. Our laboratory has demonstrated that ethane, a stable product of lipid peroxidation, in exhaled breath can be used to measure total body oxidative stress. An ischemia-reperfusion model of lung injury in sheep has been studied in which pulmonary and bronchial lung perfusion could be interrupted and restored. The goal of this study was to investigate whether two commercial formulations of propofol and the individual components of the commercial formulations attenuated the oxidative stress produced in this model. Breath ethane and breath carbon monoxide were measured as biomarkers of oxidative stress that occur at reperfusion of ischemic tissue. Data were analyzed by a standard least-squares-fit model. One of the formulations for propofol, which contained the preservative ethylenediaminetetraacetic acid (EDTA), was found to decrease the overall level of oxidative stress in sheep. Furthermore, while several models of severe lung injury demonstrate additional production of reactive oxygen species, our model of ischemia/reperfusion of lung tissue did not.
Collapse
Affiliation(s)
- Robert H Brown
- Department of Anesthesiology and Critical Care Medicine, Division of Pulmonary and Critical Care Medicine in the Department of Medicine, and Division of Physiology in the Department of Environmental Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
11
|
Alegría AE, Dejesús-Andino FJ, Sanchez-Cruz P. Quinone-enhanced sonochemical production of nitric oxide from s-nitrosoglutathione. ULTRASONICS SONOCHEMISTRY 2009; 16:190-6. [PMID: 18595761 PMCID: PMC2561187 DOI: 10.1016/j.ultsonch.2008.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/18/2008] [Accepted: 05/17/2008] [Indexed: 05/26/2023]
Abstract
Sonolysis at 75 kHz of argon- and air-saturated aqueous solutions at pH 7.4 containing s-nitrosogluthathione (GSNO) enhances the production rate of nitric oxide (NO). The quinones, anthraquinone-2-sulfonate (AQ2S) and anthraquinone-2,7-disulfonate (AQ27S) further enhance the NO production over that produced in quinone-depleted sonicated solutions. In contrast, the hydrophobic quinones juglone (JQ) and 1,4-naphthoquinone (NQ) inhibit ultrasound-induced NO detection as compared to quinone-depleted solutions. Larger sonolytical decomposition of the hydrophobic quinones NQ and JQ, as compared to AQ2S and AQ27S, is detected which correlates with a larger production of pyrolysis-derived carbon-centered radicals. Reaction of those radicals with NO could explain NQ and JQ inhibition. This work suggests that sulfonated quinones could be used to enhance NO release from GSNO in tissues undergoing ultrasound irradiation.
Collapse
Affiliation(s)
- Antonio E Alegría
- Department of Chemistry, CUH Station, University of Puerto Rico at Humacao, Humacao, PR 00791.
| | | | | |
Collapse
|
12
|
Qiu W, Zheng L, Gu H, Chen D, Chen Y. Comparison between adult and infant lung injury in a rabbit ischemia-reperfusion model. J Thorac Cardiovasc Surg 2008; 136:352-9. [DOI: 10.1016/j.jtcvs.2008.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
13
|
Calcium channel blockers increase the amount of nitrite production in rabbits without decreasing the responsiveness of platelets to collagen. Clin Exp Med 2008; 7:142-8. [DOI: 10.1007/s10238-007-0138-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
|
14
|
Gal J, Kovesi T, Royston D, Marczin N. Dynamics of Nitroglycerin-induced Exhaled Nitric Oxide After Lung Transplantation: Evidence of Pulmonary Microvascular Injury? J Heart Lung Transplant 2007; 26:1300-5. [DOI: 10.1016/j.healun.2007.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 06/11/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022] Open
|