1
|
Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med 2023; 21:84. [PMID: 36740671 PMCID: PMC9901160 DOI: 10.1186/s12967-023-03930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
2
|
The Role of JAK/STAT Molecular Pathway in Vascular Remodeling Associated with Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22094980. [PMID: 34067108 PMCID: PMC8124199 DOI: 10.3390/ijms22094980] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension is defined as a group of diseases characterized by a progressive increase in pulmonary vascular resistance (PVR), which leads to right ventricular failure and premature death. There are multiple clinical manifestations that can be grouped into five different types. Pulmonary artery remodeling is a common feature in pulmonary hypertension (PH) characterized by endothelial dysfunction and smooth muscle pulmonary artery cell proliferation. The current treatments for PH are limited to vasodilatory agents that do not stop the progression of the disease. Therefore, there is a need for new agents that inhibit pulmonary artery remodeling targeting the main genetic, molecular, and cellular processes involved in PH. Chronic inflammation contributes to pulmonary artery remodeling and PH, among other vascular disorders, and many inflammatory mediators signal through the JAK/STAT pathway. Recent evidence indicates that the JAK/STAT pathway is overactivated in the pulmonary arteries of patients with PH of different types. In addition, different profibrotic cytokines such as IL-6, IL-13, and IL-11 and growth factors such as PDGF, VEGF, and TGFβ1 are activators of the JAK/STAT pathway and inducers of pulmonary remodeling, thus participating in the development of PH. The understanding of the participation and modulation of the JAK/STAT pathway in PH could be an attractive strategy for developing future treatments. There have been no studies to date focused on the JAK/STAT pathway and PH. In this review, we focus on the analysis of the expression and distribution of different JAK/STAT isoforms in the pulmonary arteries of patients with different types of PH. Furthermore, molecular canonical and noncanonical JAK/STAT pathway transactivation will be discussed in the context of vascular remodeling and PH. The consequences of JAK/STAT activation for endothelial cells and pulmonary artery smooth muscle cells’ proliferation, migration, senescence, and transformation into mesenchymal/myofibroblast cells will be described and discussed, together with different promising drugs targeting the JAK/STAT pathway in vitro and in vivo.
Collapse
|
3
|
Eid AH, El-Yazbi AF, Zouein F, Arredouani A, Ouhtit A, Rahman MM, Zayed H, Pintus G, Abou-Saleh H. Inositol 1,4,5-Trisphosphate Receptors in Hypertension. Front Physiol 2018; 9:1018. [PMID: 30093868 PMCID: PMC6071574 DOI: 10.3389/fphys.2018.01018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic hypertension remains a major cause of global mortality and morbidity. It is a complex disease that is the clinical manifestation of multiple genetic, environmental, nutritional, hormonal, and aging-related disorders. Evidence supports a role for vascular aging in the development of hypertension involving an impairment in endothelial function together with an alteration in vascular smooth muscle cells (VSMCs) calcium homeostasis leading to increased myogenic tone. Changes in free intracellular calcium levels ([Ca2+] i ) are mediated either by the influx of Ca2+ from the extracellular space or release of Ca2+ from intracellular stores, mainly the sarcoplasmic reticulum (SR). The influx of extracellular Ca2+ occurs primarily through voltage-gated Ca2+ channels (VGCCs), store-operated Ca2+ channels (SOC), and Ca2+ release-activated channels (CRAC), whereas SR-Ca2+ release occurs through inositol trisphosphate receptor (IP3R) and ryanodine receptors (RyRs). IP3R-mediated SR-Ca2+ release, in the form of Ca2+ waves, not only contributes to VSMC contraction and regulates VGCC function but is also intimately involved in structural remodeling of resistance arteries in hypertension. This involves a phenotypic switch of VSMCs as well as an alteration of cytoplasmic Ca2+ signaling machinery, a phenomena tightly related to the aging process. Several lines of evidence implicate changes in expression/function levels of IP3R isoforms in the development of hypertension, VSMC phenotypic switch, and vascular aging. The present review discusses the current knowledge of these mechanisms in an integrative approach and further suggests potential new targets for hypertension management and treatment.
Collapse
Affiliation(s)
- Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Fouad Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdelilah Arredouani
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md M Rahman
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Milara J, Ballester B, Morell A, Ortiz JL, Escrivá J, Fernández E, Perez-Vizcaino F, Cogolludo A, Pastor E, Artigues E, Morcillo E, Cortijo J. JAK2 mediates lung fibrosis, pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis: an experimental study. Thorax 2018; 73:519-529. [PMID: 29440315 DOI: 10.1136/thoraxjnl-2017-210728] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common disorder in patients with idiopathic pulmonary fibrosis (IPF) and portends a poor prognosis. Recent studies using vasodilators approved for PH have failed in improving IPF mainly due to ventilation (V)/perfusion (Q) mismatching and oxygen desaturation. Janus kinase type 2 (JAK2) is a non-receptor tyrosine kinase activated by a broad spectrum of profibrotic and vasoactive mediators, but its role in PH associated to PH is unknown. OBJECTIVE The study of JAK2 as potential target to treat PH in IPF. METHODS AND RESULTS JAK2 expression was increased in pulmonary arteries (PAs) from IPF (n=10; 1.93-fold; P=0.0011) and IPF+PH (n=9; 2.65-fold; P<0.0001) compared with PA from control subjects (n=10). PA remodelling was evaluated in human pulmonary artery endothelial cells (HPAECs) and human pulmonary artery smooth muscle cells (HPASMCs) from patients with IPF in vitro treated with the JAK2 inhibitor JSI-124 or siRNA-JAK2 and stimulated with transforming growth factor beta. Both JSI-124 and siRNA-JAK2 inhibited the HPAEC to mesenchymal transition and the HPASMCs to myofibroblast transition and proliferation. JAK2 inhibition induced small PA relaxation in precision-cut lung slice experiments. PA relaxation was dependent of the large conductance calcium-activated potassium channel (BKCa). JAK2 inhibition activated BKCa channels and reduced intracellular Ca2+. JSI-124 1 mg/kg/day, reduced bleomycin-induced lung fibrosis, PA remodelling, right ventricular hypertrophy, PA hypertension and V/Q mismatching in rats. The animal studies followed the ARRIVE guidelines. CONCLUSIONS JAK2 participates in PA remodelling and tension and may be an attractive target to treat IPF associated to PH.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, Jaume I University, Castellón de la Plana, Spain.,Pharmacy Unit, University General Hospital Consortium, Valencia, Spain.,CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Beatriz Ballester
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - José L Ortiz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Juan Escrivá
- Thoracic Surgery Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Estrella Fernández
- Respiratory Unit, University General Hospital Consortium, Valencia, Spain
| | - Francisco Perez-Vizcaino
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Angel Cogolludo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Enrique Pastor
- Department of Thoracic Surgery, University General Hospital Consortium, Valencia, Spain
| | - Enrique Artigues
- Surgery Unit, University General Hospital Consortium, Valencia, Spain
| | - Esteban Morcillo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Health Research Institute INCLIVA, Valencia, Spain
| | - Julio Cortijo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Research and teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
5
|
Three dimensional quantitative structure-activity relationship of 5H-Pyrido[4,3-b]indol-4-carboxamide JAK2 inhibitors. Int J Mol Sci 2013; 14:12037-53. [PMID: 23739681 PMCID: PMC3709772 DOI: 10.3390/ijms140612037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 11/17/2022] Open
Abstract
Janus kinase 2 (JAK2) is an intracellular nonreceptor tyrosine kinase that belongs to the JAK family of kinases, which play an important role in survival, proliferation, and differentiation of a variety of cells. JAK2 inhibitors are potential drugs for the treatment of myeloproliferative neoplasms. The three dimensional quantitative structure-activity relationships have been studied on a series of JAK2 inhibitors by comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA). The CoMFA model had a cross-validated coefficient q2 of 0.633, and the relation non-cross-validated coefficient r2 of 0.976. The F value is 225.030. The contributions of steric and electrostatic fields to the activity are 55.2% and 44.8%, respectively. For the CoMSIA study, the q2, r2, and F values of the model are 0.614, 0.929, and 88.771, respectively. The contributions of steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond donor fields to the activity are 27.3%, 23.9%, 16.4%, 21.7%, and 10.7%, respectively. The CoMFA and CoMSIA models showed strong predictive ability, and the 3D contour plots give the basis on the structure modification of JAK2 inhibitors.
Collapse
|
6
|
Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 2012; 302:H2190-210. [PMID: 22447942 DOI: 10.1152/ajpheart.01146.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, 38163, USA
| | | | | |
Collapse
|
7
|
Pharmacophore filtering and 3D-QSAR in the discovery of new JAK2 inhibitors. J Mol Graph Model 2011; 30:186-97. [DOI: 10.1016/j.jmgm.2011.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/22/2022]
|
8
|
|
9
|
Buckingham SD, Jones AK, Brown LA, Sattelle DB. Nicotinic acetylcholine receptor signalling: roles in Alzheimer's disease and amyloid neuroprotection. Pharmacol Rev 2009; 61:39-61. [PMID: 19293145 DOI: 10.1124/pr.108.000562] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD), the major contributor to dementia in the elderly, involves accumulation in the brain of extracellular plaques containing the beta-amyloid protein (Abeta) and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. AD is also characterized by a loss of neurons, particularly those expressing nicotinic acetylcholine receptors (nAChRs), thereby leading to a reduction in nAChR numbers. The Abeta(1-42) protein, which is toxic to neurons, is critical to the onset and progression of AD. The discovery of new drug therapies for AD is likely to be accelerated by an improved understanding of the mechanisms whereby Abeta causes neuronal death. We examine the evidence for a role in Abeta(1-42) toxicity of nAChRs; paradoxically, nAChRs can also protect neurons when activated by nicotinic ligands. Abeta peptides and nicotine differentially activate several intracellular signaling pathways, including the phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog pathway, the extracellular signal-regulated kinase/mitogen-activated protein kinase, and JAK-2/STAT-3 pathways. These pathways control cell death or survival and the secretion of Abeta peptides. We propose that understanding the differential activation of these pathways by nicotine and/or Abeta(1-42) may offer the prospect of new routes to therapy for AD.
Collapse
Affiliation(s)
- Steven D Buckingham
- Medical Research Council Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK, OX1 3QX
| | | | | | | |
Collapse
|
10
|
Hoe HS, Minami SS, Makarova A, Lee J, Hyman BT, Matsuoka Y, Rebeck GW. Fyn modulation of Dab1 effects on amyloid precursor protein and ApoE receptor 2 processing. J Biol Chem 2007; 283:6288-99. [PMID: 18089558 DOI: 10.1074/jbc.m704140200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dab1 is an intracellular adaptor protein that interacts with amyloid precursor protein (APP) and apoE receptor 2 (apoEr2), increases their levels on the cell surface, and increases their cleavage by alpha-secretases. To investigate the mechanism underlying these alterations in processing and trafficking of APP and apoEr2, we examined the effect of Fyn, an Src family-tyrosine kinase known to interact with and phosphorylate Dab1. Co-immunoprecipitation, co-immunostaining, and fluorescence lifetime imaging demonstrated an association between Fyn and APP. Fyn induced phosphorylation of APP at Tyr-757 of the (757)YENPTY(762) motif and increased cell surface expression of APP. Overexpression of Fyn alone did not alter levels of sAPPalpha or cytoplasmic C-terminal fragments, although it significantly decreased production of Abeta. However, in the presence of Dab1, Fyn significantly increased sAPPalpha and C-terminal fragments. Fyn-induced APP phosphorylation and cell surface levels of APP were potentiated in the presence of Dab1. Fyn also induced phosphorylation of apoEr2 and increased its cell surface levels and, in the presence of Dab1, affected processing of its C-terminal fragment. In vivo studies showed that sAPPalpha was decreased in the Fyn knock-out, supporting a role for Fyn in APP processing. These data demonstrate that Fyn, due in part to its effects on Dab1, regulates the phosphorylation, trafficking, and processing of APP and apoEr2.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|